Challenge Jan-2025

Christmas Word Search

A solution with DT5GL/ Python
by Jack Jansonius — 05 January 2025

Problem Statement (from the website):

You need to find how many times the word “XMAS” appears in the
grid, horizontally, vertically, or diagonally, written backwards, or even
overlapping other words in any orientation. For example, you may
find that xmas occurs a total of 18 times in the grid on the right. You can MMMSXXMASM
find this grid here. Can vou create a service capable of dealing with any SAMXMSMSA
grid? AMXSXMAAMM
MSAMASMSMX

XMASAMXAMM
AXAMMX XAMA
SMSMSASXSS
SAXAMASAAA
MAMMMXMMMM
MXMXAXMASX

Introduction
The grid consists of 10 lines, numbered from 0 to 9.
Each line consists of 10 characters, also numbered from 0 to 9.

So each character in the grid has a coordinate (line_nr, char_nr), so that (0,0) is the first
character on the first line and (9,9) is the last character on the last line.

In pseudocode, the algorithm looks simple:

For line_nr from 0 to 9 do:
For character_nr from O to 9 do:
If character at coordinate (line_nr, character_nr) =
first character of searched word:
Then:
For each direction, check:
- If direction in respect to space possible in grid:
check searched word in that direction
- If searched word present:
report coordinate of word and direction.

Else:
Do nothing (= skip character)

ChatGPT (but also Copilot in Jacob Feldman's first solution) comes up with a very
ingenious notation for the direction to investigate:

directions = [
(0, 1), # Right
(1, 0), # Down
(1, 1), # Down-Right diagonal
(1, -1), # Down-Left diagonal
(0, -1), # Left
('11 O)I # Up
(-1, -1), # Up-Left diagonal
(-1, 1) # Up-Right diagonal]

(0,1) then means: line_nr + 0, char_nr + 1, so 1 character to the right on the same line.
And (-1, -1) means: line_nr -1, char_nr -1, so 1 line up and 1 character to the left in the
grid.

Based on the length of the searched word, we can now check for each direction to be
examined whether it makes sense to check whether the searched word is present.

For a certain coordinate in the grid for the direction DOWN only 1 condition is relevant,
namely: line_nr + word_length <= grid_height

And for the direction RIGHT, also only 1 condition is relevant:
char_nr + word_length <= grid_width

And both of the above conditions are relevant for the DOWN-RIGHT direction.

In this way, for all 8 directions at a point in the grid (which must be the first letter of the
searched word), only 1 or 2 conditions are always relevant.

Implementation of the decision model in DT5GL/Python:

Initial instructions:

>>: grid height = get grid height() # from DTFunctions.py
>>: grid width = get grid width()

>>: lastLine = grid height - 1

>>: lastChar = grid width - 1

>>: word to find = "XMAS"

>>: word length = len(word to find)

>>: total found = 0

>>: True =1

End Instructions

rTable 0: Read next line

If: [0] 1]
next line nr in [0 - lastLine] | Y| NJ|
Then:

Line is selected X
Line is finished | | X|
oo,

rTable 1: Read next character on line

If: | 0] 1]
next char nr in [0 - lastChar] | Y| NJ
Then:

Char is selected | X |
Char is finished [X
Foeeeo.

rTable 2: Skip if the current position is not the first letter of the word

If: | 0
True = fgrid(line nr,char nr) != word to find[O0] | Y|
Then:

Direction is skipped | X
Foeeein

Direction starting up-left and going clockwise....

rTable 3: UP-LEFT, UP, UP-RIGHT!

If: [0] 1| 2]
True = line nr - word length >= -1 | Y| Y| Y|
True = char nr - word length >= -1 Y| = -]
True = char nr + word length <= grid width | =1 =1 Y|
True = is word at(line nr, char nr, -1, -1, word to find) Y|l =1 =
True = is word at(line nr, char nr, -1, 0, word to find) [=1 Y| -]
True = is word at(line nr, char nr, -1, 1, word to find) | =1 =1 Y|
Then:

Direction is UP-LEFT | X | |
Direction is UP [X
Direction is UP-RIGHT | | | X|
oo,

rTable 4: RIGHT

If: | 0]

True = char nr + word length <= grid width [Y]

True = is word at(line nr, char nr, 0, 1, word to find) | Y|

Then:

Direction is RIGHT | X|
oo

! The 8 directions can also be included in one large table or in 8 separate tables.

rTable 5:
If:

DOWN-RIGHT,

DOWN,

DOWN-LEFT

True = line nr + word length <= grid height
True = char nr + word length <= grid width

True = char nr - word length >= -1

True = is word at(line nr, char nr, 1, 1, word to find)
True = is word at(line nr, char nr, 1, 0, word to find)
True = is word at(line nr, char nr, 1, -1, word to find)
Then:

Direction is DOWN-RIGHT

Direction is DOWN

Direction is DOWN-LEFT

oo

rTable 6: LEFT

If:

True = char nr - word length >= -1

True = is word at(line nr, char nr, 0, -1, word to find)
Then:

Direction is LEFT

oo

Attribute: grid height Type: Integer

Attribute: grid width Type: Integer

Attribute: lastLine Type: Integer

Attribute: lastChar Type: Integer

Attribute: word length Type: Integer

GOALATTRIBUTE: Line
Repeat until: finished

Case: finished

Print: "Total Words Found:

Case: selected
Print: "#REM# - "

GOALATTRIBUTE: Char
Repeat until: finished

Case: finished
Print: "#REM# - "

Case: selected
Print: "#REM# - "

o
0

total found

0l
Y|
Y|

X|

2|
Y|

Y|
l

Y|

X|

GOALATTRIBUTE: Direction
Multivalued until: skipped
Case: skipped
Print: "#REM# - "
Case: UP
Print: "Start: (%s, %s), Direction: (-1, 0) (Up) " line nr char nr
>>: total found = total found + 1
Case: UP-RIGHT
Print: "Start: (%s, %s), Direction: (-1, 1) (Up-Right diagonal) " line nr
char nr
>>: total found = total found + 1
Case: RIGHT
Print: "Start: (%s, %s), Direction: (0, 1) (Right) " line nr char nr
>>: total_found = total found + 1
Case: DOWN-RIGHT
Print: "Start: (%s, %s), Direction: (1, 1) (Down-Right diagonal) " 1line nr
char nr
>>: total found = total found + 1
Case: DOWN
Print: "Start: (%s, %s), Direction: (1, 0) (Down) " line nr char nr
>>: total found = total found + 1
Case: DOWN-LEFT
Print: "Start: (%s, %s), Direction: (1, -1) (Down-Left diagonal) " 1line nr
char nr
>>: total found = total found + 1
Case: LEFT
Print: "Start: (%s, %s), Direction: (0, -1) (Left) " line nr char nr
>>: total found = total found + 1
Case: UP-LEFT
Print: "Start: (%s, %s), Direction: (-1, -1) (Up-Left diagonal) " line nr
char nr
>>: total found = total found + 1
Added to DTFunctions.py:
grid = [

"MMMSXXMASM",
"MSAMXMSMSA",
"AMXSXMAAMM" ,
"MSAMASMSMX",
"XMASAMXAMM" ,
"XXAMMXXAMA",
"SMSMSASXSS",
"SAXAMASAAA",
"MAMMMXMMMM" ,
"MXMXAXMASX"]

def fgrid(x,vy):

return grid[x] [y]
def get grid height():
return len(grid)
def get grid width():
return len(gridf[O0])
def is word at(x, y, dx, dy,
"""Check if the word exists at
for i in range(len(word)):

nx, ny x +1i *dx, vy + 1

if grid[nx] [ny]

return False
return True

character on coordinate

word) :

'= word[i]:

(line _nr, character nr).

number of lines in the grid.

number of characters on first line of the grid.

the given starting point and direction."""

*dy

Testrun (word to find ="XMAS")

PS C:\Users\administrator\dt5gl> .\dt.exe -nti?
File to read...: xmas.txt

Start: (0, 4), Direction: (1, 1) (Down-Right diagonal)
Start: (0, 5), Direction: (0, 1) (Right)

Start: (1, 4), Direction: (0, -1) (Left)

Start: (3, 9), Direction: (1, 0) (Down)

Start: (3, 9), Direction: (1, -1) (Down-Left diagonal)
Start: (4, 0), Direction: (0, 1) (Right)

Start: (4, 6), Direction: (-1, 0) (Up)

Start: (4, 6), Direction: (0, -1) (Left)

Start: (5, 0), Direction: (-1, 1) (Up-Right diagonal)
Start: (5, 6), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 1), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 3), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 3), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 5), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 5), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 5), Direction: (0, 1) (Right)

Start: (9, 9), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 9), Direction: (-1, 0) (Up)

Total Words Found: 18
Time elapsed: 0:00:01.097705

Testrun (word to find ="XMASA'")

PS C:\Users\administrator\dt5gl> .\dt.exe -nti

File to read...: xmas.txt

Start: (3, 9), Direction: (1, 0) (Down)

Start: (3, 9), Direction: (1, -1) (Down-Left diagonal)
Start: (4, 0), Direction: (0, 1) (Right)

Start: (4, 6), Direction: (0, -1) (Left)

Start: (5, 6), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 3), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 5), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 9), Direction: (-1, 0) (Up)

Total Words Found: 8
Time elapsed: 0:00:01.362062

2 DT.exe is Python code, compiled to C, and runs directly under Windows (without pre-installation of Python).
Download and all necessary files available at: https://github.com/JackJansonius/DT5GL

https://github.com/JackJansonius/DT5GL

	Challenge Jan-2025

