
Challenge Jan-2025
Christmas Word Search

A solution with DT5GL/ Python
by Jack Jansonius – 05 January 2025

Problem Statement (from the website):

Introduction
The grid consists of 10 lines, numbered from 0 to 9.
Each line consists of 10 characters, also numbered from 0 to 9.

So each character in the grid has a coordinate (line_nr, char_nr), so that (0,0) is the first
character on the first line and (9,9) is the last character on the last line.

In pseudocode, the algorithm looks simple:

For line_nr from 0 to 9 do:
 For character_nr from 0 to 9 do:
 If character at coordinate (line_nr, character_nr) =
 first character of searched word:
 Then:
 For each direction, check:
 - If direction in respect to space possible in grid:
 check searched word in that direction
 - If searched word present:
 report coordinate of word and direction.

 Else:
 Do nothing (= skip character)

ChatGPT (but also Copilot in Jacob Feldman's first solution) comes up with a very
ingenious notation for the direction to investigate:

directions = [
 (0, 1), # Right
 (1, 0), # Down
 (1, 1), # Down-Right diagonal
 (1, -1), # Down-Left diagonal
 (0, -1), # Left
 (-1, 0), # Up
 (-1, -1), # Up-Left diagonal
 (-1, 1) # Up-Right diagonal]

(0,1) then means: line_nr + 0, char_nr + 1, so 1 character to the right on the same line.
And (-1, -1) means: line_nr -1, char_nr -1, so 1 line up and 1 character to the left in the
grid.

Based on the length of the searched word, we can now check for each direction to be
examined whether it makes sense to check whether the searched word is present.

For a certain coordinate in the grid for the direction DOWN only 1 condition is relevant,
namely: line_nr + word_length <= grid_height

And for the direction RIGHT, also only 1 condition is relevant:
char_nr + word_length <= grid_width

And both of the above conditions are relevant for the DOWN-RIGHT direction.

In this way, for all 8 directions at a point in the grid (which must be the first letter of the
searched word), only 1 or 2 conditions are always relevant.

Implementation of the decision model in DT5GL/Python:

Initial_instructions:
>>: grid_height = get_grid_height() # from DTFunctions.py
>>: grid_width = get_grid_width()
>>: lastLine = grid_height - 1
>>: lastChar = grid_width - 1
>>: word_to_find = "XMAS"
>>: word_length = len(word_to_find)
>>: total_found = 0
>>: True = 1
End_Instructions

rTable 0: Read next line
If: | 0| 1|
next line_nr in [0 - lastLine] | Y| N|
Then:
Line is selected | X| |
Line is finished | | X|
.......

rTable 1: Read next character on line
If: | 0| 1|
next char_nr in [0 - lastChar] | Y| N|
Then:
Char is selected | X| |
Char is finished | | X|
.......

rTable 2: Skip if the current position is not the first letter of the word
If: | 0|
True = fgrid(line_nr,char_nr) != word_to_find[0] | Y|
Then:
Direction is skipped | X|
.......

Direction starting up-left and going clockwise....

rTable 3: UP-LEFT, UP, UP-RIGHT1
If: | 0| 1| 2|
True = line_nr - word_length >= -1 | Y| Y| Y|
True = char_nr - word_length >= -1 | Y| -| -|
True = char_nr + word_length <= grid_width | -| -| Y|
True = is_word_at(line_nr, char_nr, -1, -1, word_to_find) | Y| -| -|
True = is_word_at(line_nr, char_nr, -1, 0, word_to_find) | -| Y| -|
True = is_word_at(line_nr, char_nr, -1, 1, word_to_find) | -| -| Y|
Then:
Direction is UP-LEFT | X| | |
Direction is UP | | X| |
Direction is UP-RIGHT | | | X|
.......

rTable 4: RIGHT
If: | 0|
True = char_nr + word_length <= grid_width | Y|
True = is_word_at(line_nr, char_nr, 0, 1, word_to_find) | Y|
Then:
Direction is RIGHT | X|
.......

1 The 8 directions can also be included in one large table or in 8 separate tables.

rTable 5: DOWN-RIGHT, DOWN, DOWN-LEFT
If: | 0| 1| 2|
True = line_nr + word_length <= grid_height | Y| Y| Y|
True = char_nr + word_length <= grid_width | Y| -| -|
True = char_nr - word_length >= -1 | -| -| Y|
True = is_word_at(line_nr, char_nr, 1, 1, word_to_find) | Y| -| -|
True = is_word_at(line_nr, char_nr, 1, 0, word_to_find) | -| Y| -|
True = is_word_at(line_nr, char_nr, 1, -1, word_to_find) | -| -| Y|
Then:
Direction is DOWN-RIGHT | X| | |
Direction is DOWN | | X| |
Direction is DOWN-LEFT | | | X|
.......

rTable 6: LEFT
If: | 0|
True = char_nr - word_length >= -1 | Y|
True = is_word_at(line_nr, char_nr, 0, -1, word_to_find) | Y|
Then:
Direction is LEFT | X|
.......

Attribute: grid_height Type: Integer
Attribute: grid_width Type: Integer
Attribute: lastLine Type: Integer
Attribute: lastChar Type: Integer
Attribute: word_length Type: Integer

GOALATTRIBUTE: Line
Repeat_until: finished

Case: finished
Print: "Total Words Found: %s" total_found

Case: selected
Print: "#REM# - "

GOALATTRIBUTE: Char
Repeat_until: finished

Case: finished
Print: "#REM# - "

Case: selected
Print: "#REM# - "

GOALATTRIBUTE: Direction
Multivalued_until: skipped

Case: skipped
 Print: "#REM# - "

Case: UP
 Print: "Start: (%s, %s), Direction: (-1, 0) (Up) " line_nr char_nr
 >>: total_found = total_found + 1
Case: UP-RIGHT
 Print: "Start: (%s, %s), Direction: (-1, 1) (Up-Right diagonal) " line_nr
 char_nr
 >>: total_found = total_found + 1
Case: RIGHT
 Print: "Start: (%s, %s), Direction: (0, 1) (Right) " line_nr char_nr
 >>: total_found = total_found + 1
Case: DOWN-RIGHT
 Print: "Start: (%s, %s), Direction: (1, 1) (Down-Right diagonal) " line_nr
 char_nr
 >>: total_found = total_found + 1
Case: DOWN
 Print: "Start: (%s, %s), Direction: (1, 0) (Down) " line_nr char_nr
 >>: total_found = total_found + 1
Case: DOWN-LEFT
 Print: "Start: (%s, %s), Direction: (1, -1) (Down-Left diagonal) " line_nr
 char_nr
 >>: total_found = total_found + 1
Case: LEFT
 Print: "Start: (%s, %s), Direction: (0, -1) (Left) " line_nr char_nr
 >>: total_found = total_found + 1
Case: UP-LEFT
 Print: "Start: (%s, %s), Direction: (-1, -1) (Up-Left diagonal) " line_nr
 char_nr
 >>: total_found = total_found + 1

Added to DTFunctions.py:

grid = [
 "MMMSXXMASM",
 "MSAMXMSMSA",
 "AMXSXMAAMM",
 "MSAMASMSMX",
 "XMASAMXAMM",
 "XXAMMXXAMA",
 "SMSMSASXSS",
 "SAXAMASAAA",
 "MAMMMXMMMM",
 "MXMXAXMASX"]

def fgrid(x,y):
 return grid[x][y] # character on coordinate (line_nr, character_nr).

def get_grid_height():
 return len(grid) # number of lines in the grid.

def get_grid_width():
 return len(grid[0]) # number of characters on first line of the grid.

def is_word_at(x, y, dx, dy, word):
 """Check if the word exists at the given starting point and direction."""
 for i in range(len(word)):
 nx, ny = x + i * dx, y + i * dy
 if grid[nx][ny] != word[i]:
 return False
 return True

Testrun (word_to_find = "XMAS")

PS C:\Users\administrator\dt5gl> .\dt.exe -nti2
File to read...: xmas.txt
Start: (0, 4), Direction: (1, 1) (Down-Right diagonal)
Start: (0, 5), Direction: (0, 1) (Right)
Start: (1, 4), Direction: (0, -1) (Left)
Start: (3, 9), Direction: (1, 0) (Down)
Start: (3, 9), Direction: (1, -1) (Down-Left diagonal)
Start: (4, 0), Direction: (0, 1) (Right)
Start: (4, 6), Direction: (-1, 0) (Up)
Start: (4, 6), Direction: (0, -1) (Left)
Start: (5, 0), Direction: (-1, 1) (Up-Right diagonal)
Start: (5, 6), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 1), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 3), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 3), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 5), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 5), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 5), Direction: (0, 1) (Right)
Start: (9, 9), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 9), Direction: (-1, 0) (Up)
Total Words Found: 18
Time elapsed: 0:00:01.097705

Testrun (word_to_find = "XMASA")

PS C:\Users\administrator\dt5gl> .\dt.exe -nti
File to read...: xmas.txt
Start: (3, 9), Direction: (1, 0) (Down)
Start: (3, 9), Direction: (1, -1) (Down-Left diagonal)
Start: (4, 0), Direction: (0, 1) (Right)
Start: (4, 6), Direction: (0, -1) (Left)
Start: (5, 6), Direction: (-1, -1) (Up-Left diagonal)
Start: (9, 3), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 5), Direction: (-1, 1) (Up-Right diagonal)
Start: (9, 9), Direction: (-1, 0) (Up)
Total Words Found: 8
Time elapsed: 0:00:01.362062

2 DT.exe is Python code, compiled to C, and runs directly under Windows (without pre-installation of Python).
 Download and all necessary files available at: https://github.com/JackJansonius/DT5GL

https://github.com/JackJansonius/DT5GL

	Challenge Jan-2025

