=== Decision Management Community ===

Challenge Sep 2024 "Rental Boats"

Solution with OpenRules Rule Solver

by Ian Detinich, iandetinich@gmail.com

Problem Statement

The problem was defined at https://dmcommunity.org/challenge-sep-2024/:

Challenge Sep-2024

Rental Boats Solutions

Floataway tours has \$420,000 that may be used to purchase new rental boats for hire during the summer. The boats can be purchased from two different manufacturers. Floataway tours would like to purchase at least 50 boats and would like to purchase the same number from Sleekboat as from Racer to maintain goodwill. Also, Floataway Tours wishes to have a total capacity of at

least 200. Data about the boats is summarized below:

Boat	Manufacturer	Cost	Seating	Expected Daily Profit
Speedhawk	Sleekboat	\$6,000	3	\$70
Silverbird	Sleekboat	\$7,000	5	\$80
Catman	Racer	\$5,000	2	\$50
Classy	Racer	\$9,000	6	\$110

Your task is to create a decision model that will help Floataway to purchase boats while satisfying the above requirements and maximizing profit. Send your solutions to DecisionManagementCommunity@gmail.com.

Problem Definition

I used OpenRules <u>Rule Solver</u> to define and solve this problem in one Excel file "RentalBoats.xls". I started with a Glossary:

Glossary glossary			
Variables	Business Concept	Attribute Type	
Total Amount to Spend		totalAmountToSpend	int
Boats		boats	Boat[]
Min Number Of Boats		minNumberOfBoats	int
Boat Types		boatTypes	String[]
Manufacturers		manufacturers	String[]
Boat Costs	Rental	boatCost	int[]
Boat Capacities		boatCapacities	int[]
Min Total Capacity		minTotalCapacity	int
Expected Daily Profits		expectedDailyProfits	int[]
Total Cost		totalCost	int
Total Profit		totalProfit	int
Type	type S		String
Manufacturer		manufacturer	String
Cost	Boat	cost	int
Capacity		capacity	int
Expected Daily Profit		expectedDailyProfit	int
Smallest Boat Cost	Tomp	smallestBoatCost	int
Max Needed Boats	Temp	macNeededBoats	int

Here I introduced the business concept "Rental" which refers to our input data such as "Total Amount to Spend", "Min Number Of Boats", and other decision variables in blue. The output variables (in red) are "Total Cost" and "Total Profit".

Having this Glossary defined I create a test case from the Challenge in the table "DecisionTest":

DecisionTest te	estCases			
#	ActionDefine	ActionDefine	ActionDefine	ActionDefine
Test ID	Total Amount to Spend	Min Number Of Boats	Min Total Capacity	Boats
Rental Boats	\$420,000	50	200	boats

All boats are defined in a separate table "DecisionData":

DecisionData B	Soat boats			
Туре	Manufacturer	Cost	Capacity	Expected Daily Profit
Speedhawk	Sleekboat	\$6,000	3	\$70
Silverbird	Sleekboat	\$7,000	5	\$80
Catman	Racer	\$5,000	2	\$50
Classy	Racer	\$9,000	6	\$110

Defining Decision Variables

For this problem, key constrained (unknown) variables represent how many boats we want to purchase. Their values vary from 0 to "Max Needed Boats". To express problem's constraints I needed also to calculate several more decision variables in the following decision table:

Decision CalculateBusine	essVariables		
	ActionAssign		
Variable	Value		
Boat Types	Array of Type of Boats		
Manufacturers	DistinctArray of Manufacturer of Boats		
Boat Costs Array of Cost of Boats			
Boat Capacities Array of Capacity of Boats			
Expected Daily Profits	Array of Expected Daily Profit of Boats		
Smallest Boat Cost	Min of Cost of Boats		
Max Needed Boats	Total Amount to Spend / Smallest Boat Cost + 1		

Having this variables calculated allowed me to define our unknown variables using the Rule Solver's column "SolverDefineVariables":

Decision DefineVariables						
	SolverDefineVariables SolverDefineVariables					
Variable Name	Method Name	Par 1	Par 2	Par 3		
"Boat Variables"	"New Variables"	"Boat Types"	"0"	"Max Needed Boats"		
"Total Number Of Boats"	"Sum"	"Boat Variables"				
"Total Capacity"	"Scalar Product"	"Boat Variables"	"Boat Capacities"			
"Total Cost"	"Scalar Product"	"Boat Variables"	"Boat Costs"			
"Total Profit"	"Scalar Product"	"Boat Variables"	"Expected Daily Profits"			

Then for each boat I needed to define "Sleekboat Variables" and "Racer Variables":

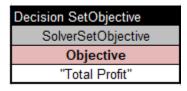
Decision Define SleekboatAndRacerVariables[for each Boat in Boats]				
Condition	SolverDefineVariables			
Manufacturer	Variable Name	Method	Par 1	
Sleekboat	"Sleekboat Variables"	"Add Variable"	Type	
Racer	"Racer Variables"	"Add Variable"	Type	

To express the "goodwill" constraint I needed to know their sums:

Decision DefineSums		
	SolverDefineVariab	les
Variable Name	Method Name	Par 1
"Sum of Sleekboats"	"Sum"	"Sleekboat Variables"
"Sum of Racers"	"Sum"	"Racer Variables"

Now I was ready to post all problem constraints in this table:

Decision PostConstraints				
	Solver	PostConstraints		
Constraint Name	Constraint Type	Par 1	Par 2	Par 3
"Limit Total Number Of Boats"	Variable Operator Value	"Total Number Of Boats"	">="	"Min Number Of Boats"
"Limit Total Capacity"	Variable Operator Value	"Total Capacity"	">="	"Min Total Capacity"
"Limit Total Cost"	Variable Operator Value	"Total Cost"	"<="	"Total Amount to Spend"
"Sleekboats=Racers"	Variable Operator Variable	"Sum of Sleekboats"	"="	"Sum of Racers"


And finally, I added all the above decision tables to the standard Rule Solver's table "Define":

Decision Define
ActionExecute
Decision Tables
CalculateBusinessVariables
DefineVariables
DefineSleekboatAndRacerVariables
DefineSums
PostConstraints

This completed my Problem Definition.

Problem Resolution

To solve the problem, I needed to define the objective as "Total Profit" and use the standard table "Solve". In did it using the following tables:

Decision Solve
ActionExecute
Actions
SetObjective
SolverMaximize
SolverLogSolution

Execution Results

Then I simply executed this decision model against our test data using the standard file "test.bat". It produced the expected results:

Found solution #1 with objective -4750. Mon Sep 09 11:38:32 EDT 2024 Found solution #2 with objective -4940. Mon Sep 09 11:38:32 EDT 2024

Found solution #3 with objective -4950. Mon Sep 09 11:38:32 EDT 2024

Found solution #4 with objective -4970. Mon Sep 09 11:38:32 EDT 2024

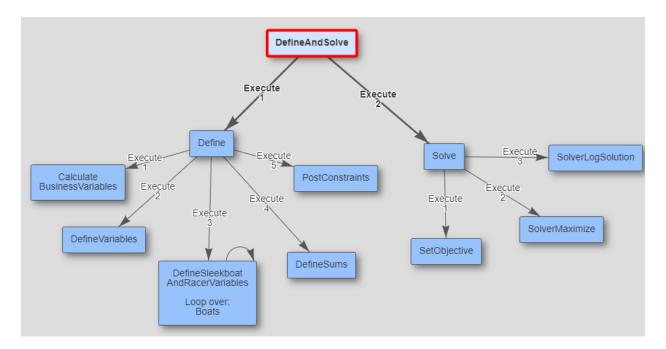
Found solution #5 with objective -4990. Mon Sep 09 11:38:32 EDT 2024

Found solution #6 with objective -5010. Mon Sep 09 11:38:32 EDT 2024

Found solution #7 with objective -5020. Mon Sep 09 11:38:32 EDT 2024

Found solution #8 with objective -5040. Mon Sep 09 11:38:32 EDT 2024

Optimal solution is found. Objective: 5040


Solution #8:

Speedhawk[28] Silverbird[0] Catman[0] Classy[28] Total Number Of Boats[56] Total Capacity[252] Total Cost[420000] Total Profit[5040] Sum of Sleekboats[28] Sum of Racers[28]

*** Execution Profile ***

Number of Choice Points: 2771

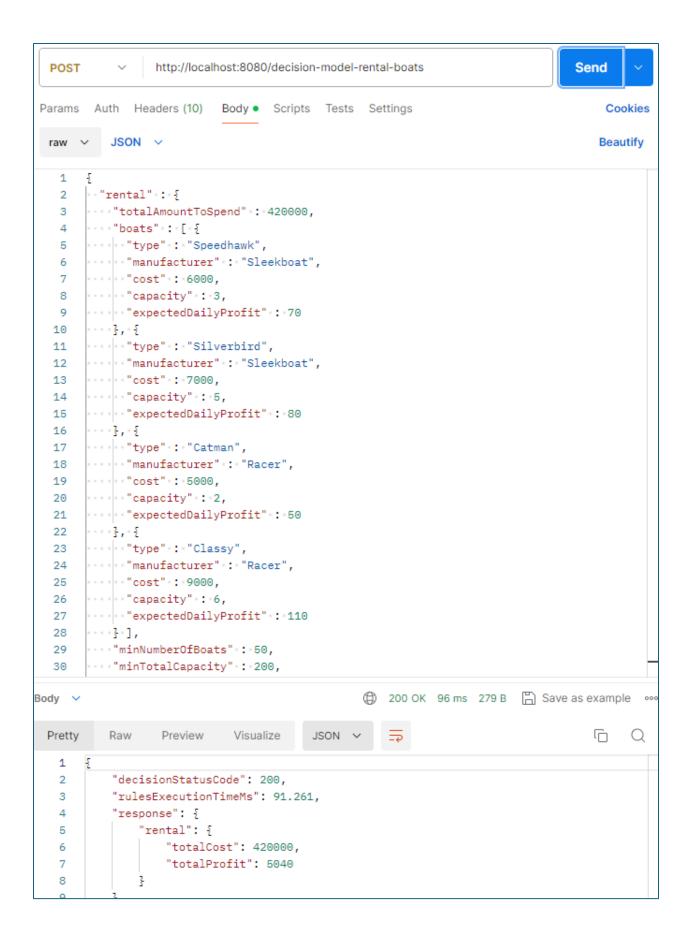
Number of Failures: 2754 Execution time: 176 msec I opened my decision model using <u>OpenRules IDE</u>. It automatically built a graphical diagram of my decision model:

I was able to use OpenRules Debugger to execute all the rules of my decision model one by one and analyze the values of all decision variables.

Deploying the Decision Model as a RESTful Decision Service

I tried to deploy my decision model as a RESTful decision service available via JSON interface already generated when I ran my model:

```
··"rental"·:·{
····"totalAmountToSpend"·: 420000,
····"boats"·:·[·{
···· type" ·: · "Speedhawk",
···· "manufacturer" ·: · "Sleekboat",
....."cost".:.6000.
···· "capacity" ·: · 3,
···· "expectedDailyProfit" ·: · 70
···· type" ·: "Silverbird",
···· "manufacturer" ·: · "Sleekboat",
......"cost".:.7000,
·····"capacity"·:·5,
.... "expectedDailyProfit":: 80
• • • • • {
···· type" ·: · "Catman",
···· "manufacturer" ·: · "Racer",
......"cost".:.5000,
···· capacity"·:·2,
.... "expectedDailyProfit"::.50
• • • • • {
···· type" ·: · "Classy",
···· "manufacturer" ·: · "Racer",
....."cost".:.9000,
····· "capacity" ·: · 6,
···· "expectedDailyProfit" ·: ·110
....}.1,
···· "minNumberOfBoats" ·: · 50,
···· "minTotalCapacity" ·: · 200,
····"totalCost"·:·0,
····"totalProfit"·:·0
. . }
```


I added the deployment property "rest" to the default OpenRules configuration file "project.properties":

```
model.file="rules/RentalBoats.xls"
report=On
trace=On
deployment=rest
```

And executed the standard OpenRules file "RunLocalServer.bat". It produced:

Then I ran POSTMAN using the above URL http://localhost:8080/decision-model-rental-boats. As a result, I got a decision service accessible through a standard REST interface. I used POSTMAN to test it. This service solved the problem with a total profit of 5040 and a total cost of 420000. It took only 91 milliseconds from start to finish.

Below is my POSTMAN view:

