Challenge April-2024
Using Lookup Tables in Decision Models

A solution with DT5GL by Jack Jansonius — 3 July 2024

Introduction
Broadly speaking, this challenge is solved along the same lines as my solutions for the
March Challenge:

1. Initially, I could not get a grip on the intent of this challenge. The specification of what
to do was drafted very unclearly, for example, with phrases such as, "has a
corresponding diagnosis," "If no corresponding pair is found, report all procedures
without compatible diagnoses," and "If a pair [...] is found, report all incompatible pairs."
For that reason, I entered the text of the challenge into ChatGPT with the request to
clarify it. This already succeeded with some follow-up questions, upon which I asked for
the solution to the challenge with a Python program in the same session. Again, ChatGPT
came up with a complete, immediately working program and that, moreover, in 3
variants.!?

2. The next challenge was to convert the algorithms in Python to DT5GL decision tables.
It always remains exciting whether the expressiveness of a knowledge modeling
language is sufficient to handle any desired specification.

Regarding the specification "If no corresponding pair is found, report all procedures
without compatible diagnoses," all [diagnosis, procedure] combinations for a procedure
must be checked until a combination is found (and the procedure is not reported) or no
combination is found (and the procedure is reported).

I was pleasantly surprised that this turned out to be no problem at all. Reading in the
Claim file in JSON format and reading in the 2 CSV files is entirely based on the provided
Python code from ChatGPT.

Remarkably, of all procedures with type X or Y, only 1 appears in the default list
"CompatibleCodes.csv", namely 11000. And this one has no corresponding pair, so all
procedures of type X or Y are actually reported. For this reason, I have added to
"CompatibleCodes.csv" 2 pairs, namely [110,28003] and [A18.83,11011] which can now
therefore be found, so that these procedure codes are no longer reported.

3. Now the 2 CSV files can be read and searched using Python, but it is still a lot easier
and faster - especially in terms of performance 2 - to import and access these files within
a relational database, for example PostgreSQL or SQLite (or any other database). This
required only a slight modification of the solution in point 2.

!'T have not included these solutions in this document but they can be found in the session with ChatGPT:
https://chatgpt.com/share/ladacab7-5234-4d18-8632-4543f3d2ed6c

2 After putting the necessary indexes on the files; again, ChatGPT provided the required instructions, both
for PostgreSQL and SQLite.

https://chatgpt.com/share/1adacab7-5234-4d18-8632-4543f3d2ed6c

Implementation of the decision model in DT5GL/Python:

Initial instructions:

>>: fn = extract claim('Claim.json') # read claim (DTFunctions.py)
>>: fn = extract compatible codes ('CompatibleCodesPlus.csv') # read csv-filel
>>: fn = extract incompatible codes ('IncompatibleCodes.csv') # read csv-file2
>>: collected procedures = "" # procedures without compatible diagnoses
>>: collected incompatible pairs = "" # incompatible Procedure-Diagnosis pairs

End Instructions

Table 0:

If: [0] 1]

next procedure nr in [0 - lastProcedure] [Y| N

Then:

Action is all procedures checked [X

Action is check diagnoses | X| |

oo,

repeat until: all procedures checked

Attribute: lastProcedure Type: Integer

Equals: len procedures() - 1

rTable 1:

If: [Ol 11 21 3]
next diagnosis nr in [0 - lastDiagnosis] | Y| Y| N| NJ
True = procedure type in ["X", "Y"] | Y| -] Y| NJ|3
True = CompatibleCodes (procedure code, diagnosis code) Yl -1 -1 -]
procedure type = "z" [=1 Yl -1 -
True = InCompatibleCodes (procedure code, diagnosis code) =1 Yl - -]
Then:

Act Diagnosis is all diagnoses handled type XY | | | X |
Act Diagnosis is all diagnoses handled type other | | | | X|
Act Diagnosis is no_report and break | X | | |
Act Diagnosis is report incompatible pair | | X| | |
oo

repeat until: all diagnoses handled type XY,

all diagnoses handled type other,

no_report and break

Attribute: fn Type: Integer

Attribute: True Type: Integer

Equals: 1

Attribute: lastDiagnosis Type: Integer

Equals: len diagnoses() - 1

Attribute: procedure type

Equals: get procedure type from claim(procedure nr)

Attribute: procedure code Type: Text

Equals: get procedure code from claim(procedure nr)

Attribute: diagnosis_code Type: Text

Equals: get diagnosis code from claim(diagnosis nr)

Attribute: collected procedures print Type: Text

Equals: collected procedures[2:] if collected procedures != "" else "None"
[2:] => skip first ", "

Attribute: collected incompatible pairs print Type: Text

Equals: collected incompatible pairs([2:] if collected incompatible pairs != "" else

"None"

3 In future versions, the addition “True = will no longer be necessary.

GOALATTRIBUTE: Action
Repeat until: all procedures checked

Case: all procedures checked

Print: "---—-—--—-—-— "

Print: "Procedures without compatible diagnoses: %s" collected procedures print
Print: "Incompatible pairs: %s"

collected incompatible pairs print

Print: "—-———-——— "

Case: check diagnoses
Print: "#REM# - "

GOALATTRIBUTE: Act Diagnosis
Repeat until: all diagnoses handled type XY, all diagnoses handled type other,
no_report and break

Case: all diagnoses_handled type XY
>>: collected procedures = collected procedures + ", " + procedure code

Case: all diagnoses handled type other
Print: "#REM# - "

Case: no_report and break
Print: "#REM# - "

Case: report incompatible pair
>>: collected incompatible pairs = collected incompatible pairs + ", " +
procedure code + "-" + diagnosis code

Required Python code in DTFunctions.pyv:

import json
import csv

def

def

def

def

def

def

def

def

def

def

def

def

load json2(file path):
with open(file path, 'r') as file:
return json.load(file)

load csv(file path):

with open(file path, 'r') as file:
reader = csv.reader (file)
return list (reader)

extract claim(file name) :

global procedures, diagnoses

claim = load json2(file name)

procedures = claim['claim'] ['procedures']
diagnoses = claim['claim']['diagnoses']
return 1

extract compatible codes(file name):
global compatible codes

compatible codes = load csv(file name)

Convert compatible codes to list of lists
compatible codes = [item for item in compatible codes]
return 1

extract incompatible codes(file name) :
global incompatible ranges

incompatible ranges = load csv(file name)
Convert incompatible ranges to list of lists
incompatible ranges = [[item[0], item[1], item[2], item[3]]

for item in incompatible ranges]
return 1

len procedures() :
return len (procedures)

len diagnoses():
return len (diagnoses)

get procedure type from claim(procedure nr):
return procedures[procedure nr] ["type"]

get procedure code from claim(procedure nr):
return procedures[procedure nr] ["code"]

get diagnosis code from claim(diagnosis nr):
return diagnoses[diagnosis nr] ["code"]

CompatibleCodes (procedure code, diagnose code):
return [diagnose code, procedure code] in compatible codes

InCompatibleCodes (procedure code, diagnose code):
for range item in incompatible ranges:
if (range_item[0] <= procedure code <= range item[1])
and (range item[2] <= diagnose code <= range item[3]):
return True
return False

Output DTSGL/Python:
The following lines were added to the CompatibleCodes.csv file at a random location:

L23.00,28003
L23.01,28003
L23.02,28003
L23.03,28003
L23.04,28003
L23.05,28003
110,28003

L23.06,28003
L23.07,28003

and
A18.83,11011

(and then saved as CompatibleCodesPlus.csv), so procedures 11011 and 28003 are not
listed under Procedures without compatible diagnoses, since the pairs 110,28003 and
A18.83,11011 can be found in the file.

PS C:\Users\Administrator\dt5gl> .\dt.exe? -source:Claim JSON vl.txt -nti
Procedures without compatible diagnoses: 12001, 28005, 11000, 27675, 49657, 623195
Incompatible pairs: 28415-110, 28415-J38.6, 28415-J38.3, 28415-H52.01, 28415-
H47.632, 28415-N64.81, 30420-I10, 30420-L76.01, 30420-N64.81

Time elapsed: 0:00:02.180757

4 DT.exe is Python code, compiled to C, and runs directly under Windows (without pre-installation of Python).
Download and all necessary files available at: https:/github.com/JackJansonius/DT5GL

5 Exercise: modify the code of the script "Claim JSON_v1.txt" so that also appears here:
Procedures with compatible diagnoses: 28003, 11011
Procedures with unknown types: 49180 - N

https://github.com/JackJansonius/DT5GL

Implementation of the decision model in DTS5GL/PostgreSOL/SOLite:

PostgreSQL database: "csv_files"
SQLite database: "Database/CSV files.db"

Initial instructions:

>>: fn = extract claim('Claim.json')
>>: collected procedures = ""

>>: collected incompatible pairs = ""
End Instructions

Table 0:

If: | 0]
next procedure nr in [0 - lastProcedure] | Y]
Then:

Action is all procedures checked [
Action is check diagnoses | X|
oo,

repeat until: all procedures_ checked

Attribute: lastProcedure Type: Integer
Equals: len procedures() - 1

rTable 1:

If:

next diagnosis nr in [0 - lastDiagnosis]

True = procedure type in ["X", "Y"]

'[Diagnosis, Procedure]-pair in Compatible Codes'
procedure type = "z"

' [Procedure, Diagnosis]-pair in inCompatible Codes'
Then:

Act Diagnosis is all diagnoses_handled type XY
Act Diagnosis is all diagnoses handled type other
Act Diagnosis is no_report and break

Act Diagnosis is report incompatible pair
oo

repeat until: all diagnoses_handled type XY,

all diagnoses handled type other,
no_report_and break

Attribute: fn Type: Integer
Attribute: True Type: Integer
Equals: 1

Attribute: lastDiagnosis Type: Integer
Equals: len diagnoses() - 1

Attribute: procedure type
Equals: get procedure type from claim(procedure nr)

Attribute: procedure code Type: Text
Equals: get procedure code from claim(procedure nr)

Attribute: diagnosis_ code Type: Text
Equals: get diagnosis code from claim(diagnosis nr)

Proposition: '[Diagnosis, Procedure]-pair in Compatible Codes'

Obtain instance from database view: CompatibleCodes

read claim
procedures without compatible diagnoses
incompatible Procedure-Diagnosis pairs

1]
N|

X|

(DTFunctions.py)

0l
Y
Y|
Y
l
ml

X|

Proposition: '[Procedure, Diagnosis]-pair in inCompatible Codes'
Obtain instance from database view: inCompatibleCodes

Attribute: collected procedures print Type: Text

Equals: collected procedures[2:] if collected procedures != "" else "None"

[2:] => skip first ", "

31
N|
N|

X|

Attribute: collected incompatible pairs print Type: Text

Equals: collected incompatible pairs[2:] if collected incompatible pairs != "" else

"None"

Database view: CompatibleCodes
With attributes: codel, code2
Query:
SELECT *
FROM CompatibleCodesPlus
WHERE procedure code =
diagnosis code =
LIMIT 1
With arguments: procedure code, diagnosis code

'$s' AND
rog!

oo

Database view: inCompatibleCodes
With attributes: codel, code2, code3, code4
Query:
SELECT *
FROM inCompatibleCodes
WHERE procedure code min
AND procedure code max >= '
AND diagnosis_ code min
AND diagnosis_code max >=
LIMIT 1
With arguments: procedure code, procedure code, diagnosis code, diagnosis code

A
Il
oe

AN

Il

oe oo
n n n n

oe

GOALATTRIBUTE: Action
Repeat until: all procedures checked

Case: all procedures checked

Print: "-- - "

Print: "Procedures without compatible diagnoses: %s" collected procedures print
Print: "Incompatible pairs: %s"

collected incompatible pairs print

Print: """ "

Case: check diagnoses
Print: "#REM# - "

GOALATTRIBUTE: Act Diagnosis
Repeat until: all diagnoses handled type XY, all diagnoses_handled type other,
no report and break

Case: all diagnoses handled type XY
>>: collected procedures = collected procedures + ", " + procedure code

Case: all diagnoses_handled type other
Print: "#REM# - "

Case: no_report and break
Print: "#REM# - "

Case: report incompatible pair
>>: collected incompatible pairs = collected incompatible pairs + ", " +
procedure code + "-" + diagnosis code

Output DTS5GL/SQLite/PostgreSQL

SQLite database: "Database/CSV files.db"

PS C:\Users\Administrator\dt5gl> .\dt.exe -source:Claim JSON v2.txt

Procedures without

Incompatible pairs:

H47.632, 28415-N64

Time elapsed: 0:00

compatible diagnoses: 12001, 28005, 11000, 27675, 49657, 62319
28415-110, 28415-J38.6, 28415-J38.3, 28415-H52.01, 28415-
.81, 30420-110, 30420-L76.01, 30420-N64.81

:00.143317

PostgreSQL database: "csv_files"

PS C:\Users\Administrator\dt5gl> .\dt.exe -source:Claim JSON v2.txt

Procedures without

Incompatible pairs:

H47.632, 28415-N64

Time elapsed: 0:00

compatible diagnoses: 12001, 28005, 11000, 27675, 49657, 62319
28415-110, 28415-J38.6, 28415-J038.3, 28415-H52.01, 28415-
.81, 30420-110, 30420-L76.01, 30420-N64.81

:00.336505

Decision tables: variations on a theme.

The previous solutions are based on 2 decision tables, but they can also be merged into 1
table or split into multiple tables (with equal functionality, of course). Note that for all
variations, the total number of columns in the tables is always 6.

1. merging into 1 table:

rTable 1:

If: [O] 1| 2] 3| 4] 5]
next procedure nr in [0 - lastProcedure] [Y| NI =] = =| -]
next diagnosis nr in [0 - lastDiagnosis] Il =1 =1 Y| Y| N| N|
True = procedure type in ["X", "Y"] | =1 =1 Y| - Y| N|
True = CompatibleCodes (procedure code, diagnosis_ code) [=1 =1 Y] =1 =1 —|
procedure type = "Z2" [=1 =1 =1 Yl -1 -
True = InCompatibleCodes (procedure code, diagnosis code) | =1 =1 =1 Y| = -]
Then:

Action is all procedures_checked e xt 0 00
Action is check diagnoses D S
Act Diagnosis is all diagnoses handled type XY | | | | | X |
Act Diagnosis is all diagnoses handled type other [B N N
Act Diagnosis is no report and break (D
Act Diagnosis is report incompatible pair | | | | X | |
oo

Action: repeat until: all procedures checked

Act Diagnosis: repeat until: all diagnoses_handled type XY,

all diagnoses handled type other,

no report and break

Attribute: lastProcedure Type: Integer

Equals: len procedures() - 1

Attribute: lastDiagnosis Type: Integer

Equals: len diagnoses() - 1

2. split table 2 into 2 tables

rTable 0:

If: [0] 1]

next procedure nr in [0 - lastProcedure] | Y| NJ

Then:

Action is all procedures checked | | X|

Action is check diagnoses | X| |

o

repeat until: all procedures checked

Attribute: lastProcedure Type: Integer

Equals: len procedures() - 1

rTable 1:

If: | 0] 1]
next diagnosis nr in [0 - lastDiagnosis] | Y| NJ
True = procedure type in ["X", "Y"] | Y| Y|
True = CompatibleCodes (procedure code, diagnosis code) Y|l —=|
Then:

Act Diagnosis is all diagnoses handled type XY [X]
Act Diagnosis is no_report and break [X[]
oo

repeat until: all diagnoses_handled type XY, no report and break

rTable 2:

If: | 0] 1]
next diagnosis nr | Y| NJ|6
True = procedure type in ["X", "Y"] | =] NJ|
procedure type = "z" Y| -]
True = InCompatibleCodes (procedure code, diagnosis_ code) Y| -]
Then:

Act Diagnosis is all diagnoses handled type other [X]
Act Diagnosis is report incompatible pair | X| |
oo,

repeat until: all diagnoses handled type other

Attribute: lastDiagnosis Type: Integer

Equals: len diagnoses() - 1

 When setting up this table, I intuitively used again the condition: next diagnosis_nr in [0 - lastDiagnosis],
but that produces an error message: Error: attribute after 'next'-instruction in condition 1 in table 2 already
exists. Optionally specify 'next attribute' without follow-up instructions.
In short, if an attribute is already provided with a range, this range must be omitted in subsequent tables.

3. Split 3 tables into 6 (but not recommended)

rTable Oa:

If:

next procedure nr in [0 - lastProcedure]
Then:

Action is all procedures checked

o

repeat until: all procedures checked

rTable Ob:

If:

next procedure nr

Then:

Action is check diagnoses

Attribute: lastProcedure Type: Integer
Equals: len procedures() - 1

rTable la:

If:

next diagnosis nr in [0 - lastDiagnosis]
True = procedure type in ["X", "Y"]
Then:

Act Diagnosis is all diagnoses_handled type XY

oo
repeat until: all diagnoses_handled type XY

rTable 1b:

If:

next diagnosis nr

True = procedure type in ["X", "Y"]

True = CompatibleCodes (procedure code, diagnosis code)

Then:
Act Diagnosis is no_report and break
R

repeat until: no_ report and break

Attribute: lastDiagnosis Type: Integer
Equals: len diagnoses() - 1

rTable 2a:

If:

next diagnosis nr
True = procedure type in ["X", "Y"]
Then:

0l
N|

X|

0l
Y|

X|

Act Diagnosis is all diagnoses handled type other

oo,

repeat until: all diagnoses handled type other

rTable 2b:

If:

next diagnosis nr
procedure type = "2"

True = InCompatibleCodes (procedure code, diagnosis_ code)

Then:
Act Diagnosis is report incompatible pair

0l
N|
Y|

X|

0]
Y|
Y|
Y|

X|

0]
N|
N|

X|

0l
Y
Y|
Y

X|

	Challenge April-2024

