
 
Challenge April-2024 
Using Lookup Tables in Decision Models   
 
A solution with DT5GL by Jack Jansonius – 3 July 2024 
 
 
Introduction 
Broadly speaking, this challenge is solved along the same lines as my solutions for the 
March Challenge: 
 
1. Initially, I could not get a grip on the intent of this challenge. The specification of what 
to do was drafted very unclearly, for example, with phrases such as, "has a 
corresponding diagnosis," "If no corresponding pair is found, report all procedures 
without compatible diagnoses," and "If a pair [...] is found, report all incompatible pairs." 
For that reason, I entered the text of the challenge into ChatGPT with the request to 
clarify it. This already succeeded with some follow-up questions, upon which I asked for 
the solution to the challenge with a Python program in the same session. Again, ChatGPT 
came up with a complete, immediately working program and that, moreover, in 3 
variants.1 
 
2. The next challenge was to convert the algorithms in Python to DT5GL decision tables. 
It always remains exciting whether the expressiveness of a knowledge modeling 
language is sufficient to handle any desired specification. 
 
Regarding the specification "If no corresponding pair is found, report all procedures 
without compatible diagnoses," all [diagnosis, procedure] combinations for a procedure 
must be checked until a combination is found (and the procedure is not reported) or no 
combination is found (and the procedure is reported).   
 
I was pleasantly surprised that this turned out to be no problem at all. Reading in the 
Claim file in JSON format and reading in the 2 CSV files is entirely based on the provided 
Python code from ChatGPT.  
 
Remarkably, of all procedures with type X or Y, only 1 appears in the default list 
"CompatibleCodes.csv", namely 11000. And this one has no corresponding pair, so all 
procedures of type X or Y are actually reported. For this reason, I have added to 
"CompatibleCodes.csv" 2 pairs, namely [I10,28003] and [A18.83,11011] which can now 
therefore be found, so that these procedure codes are no longer reported.  
 
3. Now the 2 CSV files can be read and searched using Python, but it is still a lot easier 
and faster - especially in terms of performance 2 - to import and access these files within 
a relational database, for example PostgreSQL or SQLite (or any other database). This 
required only a slight modification of the solution in point 2. 
 
 
 

                                                 
1 I have not included these solutions in this document but they can be found in the session with ChatGPT: 
   https://chatgpt.com/share/1adacab7-5234-4d18-8632-4543f3d2ed6c 
2 After putting the necessary indexes on the files; again, ChatGPT provided the required instructions, both 
   for PostgreSQL and SQLite. 

https://chatgpt.com/share/1adacab7-5234-4d18-8632-4543f3d2ed6c


Implementation of the decision model in DT5GL/Python: 
 
Initial_instructions: 
>>: fn = extract_claim('Claim.json')                # read claim (DTFunctions.py) 
>>: fn = extract_compatible_codes('CompatibleCodesPlus.csv')    # read csv-file1    
>>: fn = extract_incompatible_codes('IncompatibleCodes.csv')    # read csv-file2 
>>: collected_procedures = ""            # procedures without compatible diagnoses 
>>: collected_incompatible_pairs = ""    # incompatible Procedure–Diagnosis pairs 
End_Instructions 
 
 
Table 0:  
If:                                            | 0| 1| 
next procedure_nr in [0 - lastProcedure]       | Y| N| 
Then:                                               
Action is all_procedures_checked               |  | X| 
Action is check_diagnoses                      | X|  | 
# ....... 
# repeat until: all_procedures_checked 
 
Attribute: lastProcedure     Type: Integer 
Equals: len_procedures() - 1 
 
 
rTable 1:  
If:                                                       | 0| 1| 2| 3| 
next diagnosis_nr in [0 - lastDiagnosis]                  | Y| Y| N| N| 
True = procedure_type in ["X", "Y"]                       | Y| -| Y| N|3 
True = CompatibleCodes(procedure_code, diagnosis_code)    | Y| -| -| -| 
procedure_type = "Z"                                      | -| Y| -| -|  
True = InCompatibleCodes(procedure_code, diagnosis_code)  | -| Y| -| -| 
Then:                                                             
Act_Diagnosis is all_diagnoses_handled_type_XY            |  |  | X|  | 
Act_Diagnosis is all_diagnoses_handled_type_other         |  |  |  | X| 
Act_Diagnosis is no_report_and_break                      | X|  |  |  |  
Act_Diagnosis is report_incompatible_pair                 |  | X|  |  | 
# ....... 
# repeat until: all_diagnoses_handled_type_XY,  
#               all_diagnoses_handled_type_other,   
#               no_report_and_break 
 
Attribute: fn                Type: Integer 
Attribute: True              Type: Integer 
Equals: 1 
 
Attribute: lastDiagnosis     Type: Integer 
Equals: len_diagnoses() - 1 
 
Attribute: procedure_type    
Equals: get_procedure_type_from_claim(procedure_nr) 
 
Attribute: procedure_code    Type: Text 
Equals: get_procedure_code_from_claim(procedure_nr) 
 
Attribute: diagnosis_code    Type: Text 
Equals: get_diagnosis_code_from_claim(diagnosis_nr) 
 
Attribute: collected_procedures_print   Type: Text 
Equals: collected_procedures[2:] if collected_procedures != "" else "None" 
# [2:] => skip first ", " 
 
Attribute: collected_incompatible_pairs_print  Type: Text 
Equals: collected_incompatible_pairs[2:] if collected_incompatible_pairs != "" else 
"None" 
 

                                                 
3 In future versions, the addition “True = ” will no longer be necessary. 



GOALATTRIBUTE: Action  
Repeat_until: all_procedures_checked  
 
Case: all_procedures_checked  
Print: "----------------------------------------------" 
Print: "Procedures without compatible diagnoses: %s"  collected_procedures_print 
Print: "Incompatible pairs: %s"                        
collected_incompatible_pairs_print 
Print: "----------------------------------------------" 
 
Case: check_diagnoses 
Print: "#REM# - " 
 
      
GOALATTRIBUTE: Act_Diagnosis 
Repeat_until: all_diagnoses_handled_type_XY, all_diagnoses_handled_type_other, 
no_report_and_break 
 
Case: all_diagnoses_handled_type_XY     
>>: collected_procedures = collected_procedures + ", " + procedure_code 
 
Case: all_diagnoses_handled_type_other 
Print: "#REM# - " 
 
Case: no_report_and_break 
Print: "#REM# - " 
 
Case: report_incompatible_pair 
>>: collected_incompatible_pairs = collected_incompatible_pairs + ", " + 
procedure_code + "-" + diagnosis_code 
 
 



Required Python code in DTFunctions.py:  
 
import json 
import csv 
 
def load_json2(file_path): 
    with open(file_path, 'r') as file: 
        return json.load(file) 
 
 
def load_csv(file_path): 
    with open(file_path, 'r') as file: 
        reader = csv.reader(file) 
        return list(reader) 
 
def extract_claim(file_name): 
    global procedures, diagnoses 
    claim = load_json2(file_name) 
    procedures = claim['claim']['procedures'] 
    diagnoses = claim['claim']['diagnoses'] 
    return 1 
 
def extract_compatible_codes(file_name): 
    global compatible_codes 
    compatible_codes = load_csv(file_name) 
    # Convert compatible codes to list of lists 
    compatible_codes = [item for item in compatible_codes] 
    return 1 
 
def extract_incompatible_codes(file_name): 
    global incompatible_ranges 
    incompatible_ranges = load_csv(file_name)            
    # Convert incompatible ranges to list of lists 
    incompatible_ranges = [[item[0], item[1], item[2], item[3]]  
                          for item in incompatible_ranges] 
    return 1 
 
def len_procedures(): 
    return len(procedures) 
     
def len_diagnoses(): 
    return len(diagnoses) 
     
def get_procedure_type_from_claim(procedure_nr): 
    return procedures[procedure_nr]["type"] 
 
def get_procedure_code_from_claim(procedure_nr): 
    return procedures[procedure_nr]["code"] 
 
def get_diagnosis_code_from_claim(diagnosis_nr): 
    return diagnoses[diagnosis_nr]["code"] 
 
def CompatibleCodes(procedure_code, diagnose_code): 
    return [diagnose_code, procedure_code] in compatible_codes  
 
def InCompatibleCodes(procedure_code, diagnose_code):    
    for range_item in incompatible_ranges:    
        if  (range_item[0] <= procedure_code <= range_item[1])  
        and (range_item[2] <= diagnose_code  <= range_item[3]): 
            return True 
    return False



Output DT5GL/Python:  
 
The following lines were added to the CompatibleCodes.csv file at a random location: 
 
L23.00,28003 
L23.01,28003 
L23.02,28003 
L23.03,28003 
L23.04,28003 
L23.05,28003 
I10,28003        
L23.06,28003 
L23.07,28003 
 
and  
 
A18.83,11011 
 
(and then saved as CompatibleCodesPlus.csv), so procedures 11011 and 28003 are not 
listed under Procedures without compatible diagnoses, since the pairs I10,28003 and 
A18.83,11011 can be found in the file. 
 
 
PS C:\Users\Administrator\dt5gl> .\dt.exe4 -source:Claim_JSON_v1.txt -nti 
---------------------------------------------- 
Procedures without compatible diagnoses: 12001, 28005, 11000, 27675, 49657, 623195 
Incompatible pairs: 28415-I10, 28415-J38.6, 28415-J38.3, 28415-H52.01, 28415-
H47.632, 28415-N64.81, 30420-I10, 30420-L76.01, 30420-N64.81 
---------------------------------------------- 
Time elapsed: 0:00:02.180757 
 
 

                                                 
4 DT.exe is Python code, compiled to C, and runs directly under Windows (without pre-installation of Python). 
  Download and all necessary files available at: https://github.com/JackJansonius/DT5GL 
5 Exercise: modify the code of the script "Claim_JSON_v1.txt" so that also appears here: 
  Procedures with compatible diagnoses: 28003, 11011 
  Procedures with unknown types: 49180 - N 

https://github.com/JackJansonius/DT5GL


Implementation of the decision model in DT5GL/PostgreSQL/SQLite: 
 
PostgreSQL_database: "csv_files" 
# SQLite_database: "Database/CSV files.db" 
 
Initial_instructions: 
>>: fn = extract_claim('Claim.json')      # read claim (DTFunctions.py) 
>>: collected_procedures = ""             # procedures without compatible diagnoses 
>>: collected_incompatible_pairs = ""     # incompatible Procedure–Diagnosis pairs 
End_Instructions 
 
 
Table 0:  
If:                                            | 0| 1| 
next procedure_nr in [0 - lastProcedure]       | Y| N| 
Then:                                               
Action is all_procedures_checked               |  | X| 
Action is check_diagnoses                      | X|  | 
# ....... 
# repeat until: all_procedures_checked 
 
Attribute: lastProcedure     Type: Integer 
Equals: len_procedures() - 1 
 
rTable 1:  
If:                                                       | 0| 1| 2| 3| 
next diagnosis_nr in [0 - lastDiagnosis]                  | Y| Y| N| N| 
True = procedure_type in ["X", "Y"]                       | Y| -| Y| N| 
'[Diagnosis, Procedure]-pair in Compatible Codes'         | Y| -| -| -| 
procedure_type = "Z"                                      | -| Y| -| -|                                                 
'[Procedure, Diagnosis]-pair in inCompatible Codes'       | -| Y| -| -| 
Then:                                                             
Act_Diagnosis is all_diagnoses_handled_type_XY            |  |  | X|  | 
Act_Diagnosis is all_diagnoses_handled_type_other         |  |  |  | X| 
Act_Diagnosis is no_report_and_break                      | X|  |  |  |                                            
Act_Diagnosis is report_incompatible_pair                 |  | X|  |  | 
# ....... 
# repeat until: all_diagnoses_handled_type_XY,  
#               all_diagnoses_handled_type_other,   
#               no_report_and_break 
 
Attribute: fn                Type: Integer 
Attribute: True              Type: Integer 
Equals: 1 
 
Attribute: lastDiagnosis     Type: Integer 
Equals: len_diagnoses() - 1 
 
Attribute: procedure_type    
Equals: get_procedure_type_from_claim(procedure_nr) 
 
Attribute: procedure_code    Type: Text 
Equals: get_procedure_code_from_claim(procedure_nr) 
 
Attribute: diagnosis_code    Type: Text 
Equals: get_diagnosis_code_from_claim(diagnosis_nr) 
 
Proposition: '[Diagnosis, Procedure]-pair in Compatible Codes' 
Obtain_instance_from_database_view: CompatibleCodes 
 
Proposition: '[Procedure, Diagnosis]-pair in inCompatible Codes' 
Obtain_instance_from_database_view: inCompatibleCodes 
 
Attribute: collected_procedures_print   Type: Text 
Equals: collected_procedures[2:] if collected_procedures != "" else "None" 
# [2:] => skip first ", " 
 



Attribute: collected_incompatible_pairs_print  Type: Text 
Equals: collected_incompatible_pairs[2:] if collected_incompatible_pairs != "" else 
"None" 
 
 
Database_view: CompatibleCodes 
With_attributes: code1, code2  
Query: 
SELECT * 
  FROM CompatibleCodesPlus 
 WHERE procedure_code = '%s' AND  
       diagnosis_code = '%s' 
 LIMIT 1 
With_arguments: procedure_code, diagnosis_code 
 
 
Database_view: inCompatibleCodes 
With_attributes: code1, code2, code3, code4 
Query: 
SELECT * 
  FROM inCompatibleCodes 
 WHERE procedure_code_min <= '%s'  
   AND procedure_code_max >= '%s' 
   AND diagnosis_code_min <= '%s' 
   AND diagnosis_code_max >= '%s' 
 LIMIT 1 
With_arguments: procedure_code, procedure_code, diagnosis_code, diagnosis_code 
 
 
 
GOALATTRIBUTE: Action  
Repeat_until: all_procedures_checked  
 
Case: all_procedures_checked  
Print: "----------------------------------------------" 
Print: "Procedures without compatible diagnoses: %s"   collected_procedures_print 
Print: "Incompatible pairs: %s"                        
collected_incompatible_pairs_print 
Print: "----------------------------------------------" 
 
Case: check_diagnoses 
Print: "#REM# - " 
      
 
GOALATTRIBUTE: Act_Diagnosis 
Repeat_until: all_diagnoses_handled_type_XY, all_diagnoses_handled_type_other, 
no_report_and_break 
 
Case: all_diagnoses_handled_type_XY     
>>: collected_procedures = collected_procedures + ", " + procedure_code 
 
Case: all_diagnoses_handled_type_other 
Print: "#REM# - " 
 
Case: no_report_and_break 
Print: "#REM# - " 
 
Case: report_incompatible_pair 
>>: collected_incompatible_pairs = collected_incompatible_pairs + ", " + 
procedure_code + "-" + diagnosis_code 
 



Output DT5GL/SQLite/PostgreSQL 
 
 
 
SQLite_database: "Database/CSV files.db" 
 
PS C:\Users\Administrator\dt5gl> .\dt.exe -source:Claim_JSON_v2.txt 
---------------------------------------------- 
Procedures without compatible diagnoses: 12001, 28005, 11000, 27675, 49657, 62319 
Incompatible pairs: 28415-I10, 28415-J38.6, 28415-J38.3, 28415-H52.01, 28415-
H47.632, 28415-N64.81, 30420-I10, 30420-L76.01, 30420-N64.81 
---------------------------------------------- 
Time elapsed: 0:00:00.143317 
 
 
 
 
PostgreSQL_database: "csv_files" 
 
PS C:\Users\Administrator\dt5gl> .\dt.exe -source:Claim_JSON_v2.txt 
---------------------------------------------- 
Procedures without compatible diagnoses: 12001, 28005, 11000, 27675, 49657, 62319 
Incompatible pairs: 28415-I10, 28415-J38.6, 28415-J38.3, 28415-H52.01, 28415-
H47.632, 28415-N64.81, 30420-I10, 30420-L76.01, 30420-N64.81 
---------------------------------------------- 
Time elapsed: 0:00:00.336505 
 
 
 
 
 
 
 
 
 
 
 



Decision tables: variations on a theme. 
 

The previous solutions are based on 2 decision tables, but they can also be merged into 1 
table or split into multiple tables (with equal functionality, of course). Note that for all 
variations, the total number of columns in the tables is always 6.   
 
1. merging into 1 table: 
 
rTable 1:  
If:                                                             | 0| 1| 2| 3| 4| 5| 
next procedure_nr in [0 - lastProcedure]                        | Y| N| -| -| -| -| 
next diagnosis_nr in [0 - lastDiagnosis]                        | -| -| Y| Y| N| N| 
True = procedure_type in ["X", "Y"]                             | -| -| Y| -| Y| N| 
True = CompatibleCodes(procedure_code, diagnosis_code)          | -| -| Y| -| -| -| 
procedure_type = "Z"                                            | -| -| -| Y| -| -|   
True = InCompatibleCodes(procedure_code, diagnosis_code)        | -| -| -| Y| -| -| 
Then:                                                                         
Action is all_procedures_checked                                |  | X|  |  |  |  | 
Action is check_diagnoses                                       | X|  |  |  |  |  | 
Act_Diagnosis is all_diagnoses_handled_type_XY                  |  |  |  |  | X|  | 
Act_Diagnosis is all_diagnoses_handled_type_other               |  |  |  |  |  | X| 
Act_Diagnosis is no_report_and_break                            |  |  | X|  |  |  |    
Act_Diagnosis is report_incompatible_pair                       |  |  |  | X|  |  | 
# ....... 
# Action: repeat until: all_procedures_checked 
#         Act_Diagnosis: repeat until: all_diagnoses_handled_type_XY,  
#                                      all_diagnoses_handled_type_other,   
#                                      no_report_and_break 
 
 
Attribute: lastProcedure     Type: Integer 
Equals: len_procedures() - 1 
 
Attribute: lastDiagnosis     Type: Integer 
Equals: len_diagnoses() - 1



2. split table 2 into 2 tables 
 
rTable 0:  
If:                                            | 0| 1| 
next procedure_nr in [0 - lastProcedure]       | Y| N| 
Then:                                               
Action is all_procedures_checked               |  | X| 
Action is check_diagnoses                      | X|  | 
# ....... 
# repeat until: all_procedures_checked 
 
Attribute: lastProcedure     Type: Integer 
Equals: len_procedures() - 1 
 
rTable 1:  
If:                                                       | 0| 1| 
next diagnosis_nr in [0 - lastDiagnosis]                  | Y| N| 
True = procedure_type in ["X", "Y"]                       | Y| Y| 
True = CompatibleCodes(procedure_code, diagnosis_code)    | Y| -| 
Then:                                                          
Act_Diagnosis is all_diagnoses_handled_type_XY            |  | X| 
Act_Diagnosis is no_report_and_break                      | X|  |    
# ....... 
# repeat until: all_diagnoses_handled_type_XY, no_report_and_break 
 
 
rTable 2:  
If:                                                       | 0| 1| 
next diagnosis_nr                                         | Y| N|6 
True = procedure_type in ["X", "Y"]                       | -| N| 
procedure_type = "Z"                                      | Y| -|   
True = InCompatibleCodes(procedure_code, diagnosis_code)  | Y| -| 
Then:                                                          
Act_Diagnosis is all_diagnoses_handled_type_other         |  | X| 
Act_Diagnosis is report_incompatible_pair                 | X|  | 
# ....... 
# repeat until: all_diagnoses_handled_type_other  
 
Attribute: lastDiagnosis     Type: Integer 
Equals: len_diagnoses() - 1

                                                 
6 When setting up this table, I intuitively used again the condition: next diagnosis_nr in [0 - lastDiagnosis], 
   but that produces an error message: Error: attribute after 'next'-instruction in condition 1 in table 2 already  
   exists. Optionally specify 'next attribute' without follow-up instructions.  
   In short, if an attribute is already provided with a range, this range must be omitted in subsequent tables. 



3. Split 3 tables into 6 (but not recommended) 
 
 
rTable 0a:  
If:                                            | 0| 
next procedure_nr in [0 - lastProcedure]       | N| 
Then:                                            
Action is all_procedures_checked               | X| 
# ....... 
# repeat until: all_procedures_checked 
 
rTable 0b:  
If:                                            | 0| 
next procedure_nr                              | Y| 
Then:                                               
Action is check_diagnoses                      | X| 
# ....... 
 
Attribute: lastProcedure     Type: Integer 
Equals: len_procedures() - 1 
 
 
rTable 1a:  
If:                                                       | 0| 
next diagnosis_nr in [0 - lastDiagnosis]                  | N| 
True = procedure_type in ["X", "Y"]                       | Y| 
Then:                                                       
Act_Diagnosis is all_diagnoses_handled_type_XY            | X| 
# ....... 
# repeat until: all_diagnoses_handled_type_XY 
 
rTable 1b:  
If:                                                       | 0| 
next diagnosis_nr                                         | Y| 
True = procedure_type in ["X", "Y"]                       | Y| 
True = CompatibleCodes(procedure_code, diagnosis_code)    | Y| 
Then:                                                          
Act_Diagnosis is no_report_and_break                      | X|    
# ....... 
# repeat until: no_report_and_break 
 
 
Attribute: lastDiagnosis     Type: Integer 
Equals: len_diagnoses() - 1 
 
 
rTable 2a:  
If:                                                       | 0| 
next diagnosis_nr                                         | N| 
True = procedure_type in ["X", "Y"]                       | N| 
Then:                                                       
Act_Diagnosis is all_diagnoses_handled_type_other         | X| 
# ....... 
# repeat until: all_diagnoses_handled_type_other   
 
 
rTable 2b:  
If:                                                       | 0| 
next diagnosis_nr                                         | Y| 
procedure_type = "Z"                                      | Y|   
True = InCompatibleCodes(procedure_code, diagnosis_code)  | Y| 
Then:                                                          
Act_Diagnosis is report_incompatible_pair                 | X| 
# ....... 
   


	Challenge April-2024

