DMCommunity Challenge “Soldier Payment Rules”
A Solution with OpenRules Decision Manager

This challenge asks to “assemble a single timeline for the soldier over a given service period that
shows his/her hourly pay rate in any given time.” There are several interesting solutions that
consider different time intervals and possible database organization.

This solution assumes that there are two services:

e Service 1. “Get Data for a given soldier and date”
e Service 2. “Calculate Pay Rate for a given soldier and date”.

Service 1 can be implemented differently using SQL or other means, but it is important that for a given
soldier and service date it will produce the soldier’s rank, profession, service type, unit, and combat.
Service 2 will use this data to calculate the proper pay rate.

Here is the implementation of Service 2 as a very simple decision service using OpenRules Decision
Manager. When it’s deployed as AWS Lambda function, we may execute it as any RESTful service, for
example using POSTMAN:

POST - https:/{81Inlgmirgf execute-api.us-east-1.amazonaws.com/test/soldier-payments m
Params Auth Headers (9) Bodye Pre-regq. Tests Settings Cookies
raw JSON ~ Beautify

1 f

2 problemRequest™ : §

3 "soldier”-: "Bill",

4 "serviceDate” 1 "2023-18-1&",

5 "rank" ;- "private”,

& "profession" : "fighter",

7 "serviceType"” : "active",

g "unit" @ "marines”,

9 "combat” 1 "yes"

18 1

11 [
Body ~ '?lj 200 0K 468ms 412 B [EJS&'-.'-‘:’msr:':ea'an @on
Pretty Raw Preview Visualize JSON = O Q

1 [

2 "decisionStatusCode™: 208,

3 "rulesExecutionTimeMs": ©.611522,

4 "response i

5 problemRespaonse”: §

6 rate”! 13

7 I

B I

[

https://dmcommunity.org/challenge/challenge-aug-2023-2/

Here is how it was implemented using a few Excel-based tables. First of all, here is the corresponding

business glossary:

Glossary glossary

Variable Business Concept Attribute Type Default Value | Used As
Soldier soldier String in
Service Date serviceDate Date in
Base Rate baseRate Integer b1 in
Rank rank Strin in
Profession ProblemRequest profession String in
Service Type senviceType String in
Unit unit String in
Combat combat String in
Pay Rate rate Integer out
Errors ProblemResponse BITOrS String[] out
Rank Rate rankRate Integer
Profession Rate professionFate Integer
Service Type Rate Rates senviceTypeRate Integer
Unit Rate unitRate Integer
Combat Rate combatRate Integer

As you can see, we expect that ProblemRequest contains all soldier’s characteristics. Even “Base Rate”

could come from outside or we will use the default value of $1.

Here is the main decision table:

DecisionTable DeterminePayRate

Condition Conclusion
Errors Pay Rate
Basze Rate + Rank Rate + Profession Rate +
IsEmpty | TRUE Senice Type Rate + Unit Rate + Combat Hate
Is Empty | FALSE 50

The main goal of this decision service is defined as “Pay Rate” and OpenRules will automatically define
that is depends on other characteristics mentioned in the formula “Base Rate + Rank Rate + Profession
Rate + Service Type Rate + Unit Rate + Combat Rate”. Here are other decision tables that calculate these

characteristics:

DecisionTable DetermineRankRate

Condition Conclusion Conclusion
Rank Rank Rate Errors

private 51

corporal 52

SErgeant 53
lieutenant 54

captain 55

] Add |Unknown Rank for {{Scldier}}

DecisionTable DetermineProfessionRate

Condition Conclusion Conclusion
. Profession
Profession Rate Errors
fighter 22
driver 51
cook 51
officer 53
] Add |Unknown Profession for {{Soldier}}

DecizsionTable Determine Service TypeRate
Condition Conclusion Conclusion
. Service Type
Service Type Rate Errors
active 52
reserve 21
retired 50
] Add [Unknown Service Type for {{Soldier}}

DecisionTable DeterminelUnitRate

Condition Conclusion Conclusion
Unit Unit Rate Errors
HO: 31
paratroopers 32
marines 52
infantry 52
] Add |Unknown Unit for {{Soldier}}
DecizionTable DetermineCombatRate
Condition Conclusion Conclusion
Combat Combat Rate Errors
yes 55
nao 20
1] Add |Unknown Combat for {{Soldier}}

If some characteristics are not defined or not expected, the proper Errors will be produced. Nothing else
is required. To deploy this decision model as an AWS Lambda (see the image above), we used the
standard OpenRules bat-file “deployLambda.bat”.

Probably, these rules are too simple, and if we keep the pay rates for different characteristics in a
database the problem can be completely solved using SQL only. However, we may expect that in real-

world accounting rules could be much more complex. For instance, we may add the rule “If Service Type
is retired, then Pay Rate should be $0”. It is easier to do it in rules:

DecisionTable DeterminePayRate

Condition Condition Conclusion ActionPrint
Errors Service Type Pay Rate Result
Is Empty | TRUE retired 50

Base Rate + Rank Rate + Profession Rate + |~2Y Rate ={{Pay Rate}}

s Empty | TRUE Service Type Rate + Unit Rate + Combat Rate

Please fix the errors of service data:

0
Is Empty |FALSE 5 Errors])

Here we also added the column “ActionPrint” to print the resulting pay rate or all errors. Similarly, we
may easily add more complex rules like “Give additional $2 to active fighters who are marines
participating in combat” but it could be not so simple to do it in SQL.

