
DMCommunity Challenge “Soldier Payment Rules”

A Solution with OpenRules Decision Manager

This challenge asks to “assemble a single timeline for the soldier over a given service period that

shows his/her hourly pay rate in any given time.” There are several interesting solutions that

consider different time intervals and possible database organization.

This solution assumes that there are two services:

• Service 1. “Get Data for a given soldier and date”

• Service 2. “Calculate Pay Rate for a given soldier and date”.

Service 1 can be implemented differently using SQL or other means, but it is important that for a given

soldier and service date it will produce the soldier’s rank, profession, service type, unit, and combat.

Service 2 will use this data to calculate the proper pay rate.

Here is the implementation of Service 2 as a very simple decision service using OpenRules Decision

Manager. When it’s deployed as AWS Lambda function, we may execute it as any RESTful service, for

example using POSTMAN:

https://dmcommunity.org/challenge/challenge-aug-2023-2/

Here is how it was implemented using a few Excel-based tables. First of all, here is the corresponding

business glossary:

As you can see, we expect that ProblemRequest contains all soldier’s characteristics. Even “Base Rate”

could come from outside or we will use the default value of $1.

Here is the main decision table:

The main goal of this decision service is defined as “Pay Rate” and OpenRules will automatically define

that is depends on other characteristics mentioned in the formula “Base Rate + Rank Rate + Profession

Rate + Service Type Rate + Unit Rate + Combat Rate”. Here are other decision tables that calculate these

characteristics:

If some characteristics are not defined or not expected, the proper Errors will be produced. Nothing else

is required. To deploy this decision model as an AWS Lambda (see the image above), we used the

standard OpenRules bat-file “deployLambda.bat”.

Probably, these rules are too simple, and if we keep the pay rates for different characteristics in a

database the problem can be completely solved using SQL only. However, we may expect that in real-

world accounting rules could be much more complex. For instance, we may add the rule “If Service Type

is retired, then Pay Rate should be $0”. It is easier to do it in rules:

Here we also added the column “ActionPrint” to print the resulting pay rate or all errors. Similarly, we

may easily add more complex rules like “Give additional $2 to active fighters who are marines

participating in combat” but it could be not so simple to do it in SQL.

