Problem

This solution approach addresses the Decision Management Community April 2020 challenge. The
problem comprises a staff rostering problem where doctors must be assigned to shifts, subject to
the given constraints.

Approach

The approach taken in this solution is to treat the problem as a constraint satisfaction problem and
solve the model using integer programming techniques. The ZIMPL mathematical modelling
language is used to encode the problem suitable for solving using any number of linear programming
solvers.

Model Description
The dimensions of the problem in terms of shifts and doctors as a resource are modelled as problem
parameters;

set PROFESSIONALS := {"Fleming","Freud","Heimlich","Eustachi","Golgi"};
set DAYS :={1..7};

set SHIFTS := {"Early", "Late", "Night"};

The key decision variables comprise a set of binary variables which have a value of 1 if that shift, on
that day is resourced by that doctor, otherwise the value is 0. In addition, some indicator variables
indicating that the doctor is allocated to a shift on the weekend are used to facilitate
implementation of the weekend constraints.

var ASSIGNED[DAYS*SHIFTS*PROFESSIONALS] binary;
var SATURDAY_INDICATOR[PROFESSIONALS] binary;

var SUNDAY_INDICATOR[PROFESSIONALS] binary;

A doctor’s availability is captured as a matrix representing the days and shifts where a 1 indicates the
doctor is available and a 0 indicates the doctor is not available. As shown in the sample below,
Hemlich is available for all shifts on Friday, however unavailable for the night shift on Saturday or
Sunday.

["Heimlich",5[1,1, 1 |
|"Heimlich",6] 1, 1, 0 |

["Heimlich",7| 1,1, 0 |

One of the features of the problem is to allow doctors to specify the maximum number of shifts of a
given type they are prepared to work each week. This is captured as a table. As shown in the extract
below, Golgi is prepared to work a maximum of 7 early or late shifts, but no more than 2 night shifts
in a given week.

|"Golgi"| 7,7, 2 |

Objective

As stated, the problem is more oriented towards a constraint satisfaction problem rather than an
optimisation problem. Hence the objective in this approach is somewhat arbitrary and just
maximises the sum of assignments. This is naturally constrained by the problem constraints,
however the output has value in terms of proving the model correct. Given there are 21 shifts, if all
shifts are covered by 1 doctor, then the objective should equal 21.

Alternate objectives are possible. Variations could include mini/max objectives to minimise the
utilisation variation amongst doctors. Another option could be maximise the roster satisfaction of
the doctors by including a preference matrix as well as availability. Yet another variation could be to
soften the constraints such that constraints are treated as penalties rather than hard constraints.
This can often be useful in large scale problems where a solution may not be feasible given the
vagaries of human choice.

Results

Using LPSolve on an Intel i7 laptop, the problem is readily solved in 0.030 seconds. ZIMPL can be
translated into numerous formats including LP (Cplex) format, MPS etc. Hence many solvers culd be
used to solve this model. The output using LPSolve is shown below;

ASSIGNED#1SEarlySEustachi
ASSIGNED#1SLate$SGolgi
ASSIGNED#1SNightSHeimlich
ASSIGNED#2SEarlySEustachi
ASSIGNED#2SLateSGolgi
ASSIGNED#2SNightSHeimlich
ASSIGNED#3SEarlySEustachi
ASSIGNED#3SLateSGolgi
ASSIGNED#3SNightSHeimlich
ASSIGNED#4SEarlySEustachi
ASSIGNED#4SLateSGolgi
ASSIGNED#4SNightSHeimlich
ASSIGNED#5SEarlySEustachi
ASSIGNED#5SLate$Golgi
ASSIGNED#5SNightSFleming
ASSIGNED#6SEarlySGolgi
ASSIGNED#6SLateSFreud
ASSIGNED#65NightSFleming
ASSIGNED#7SEarlySGolgi

R R R R R R R R R R R R RBRRRARRRRR

ASSIGNED#7SLateSFreud
ASSIGNED#7SNightSFleming
SATURDAY_INDICATORSFleming
SATURDAY_INDICATORSFreud
SATURDAY_INDICATORSGolgi
SUNDAY_INDICATORSFleming
SUNDAY_INDICATORSFreud
SUNDAY_INDICATORSGolgi

R R R R R R R R

Zimpl Model

The full model is shown below;

Set of Doctors

set PROFESSIONALS := {"Fleming","Freud"”,"Heimlich","Eustachi”,"Golgi"};
Set of days - Monday is 1...

set DAYS := {1..7)};

Set of shifts

set SHIFTS := {"Early", "Late™, "Night"};

Availability matrix - 1 if available, 0 otherwise...

param AVAILABILITY[PROFESSIONALS*DAYS*SHIFTS] := | "Early”, "Late", "Night"
I

"Fleming”,1	0, 0, O
"Fleming”,2	0, 0, O
"Fleming”,3	0, 0, O
"Fleming”,4]	0, 0, O
"Fleming”,5	1,1, 1
"Fleming”,6	1,1, 1
"Fleming”,7	1,1, 1
"Freud”,1	1,1, 0

|"Freud",2| 1,1, 0 |

|"Freud”,3| 1,1, 0|

["Freud",4| 1,1, 0 |
["Freud”,5| 1,1, 0 |
["Freud”,6| 1,1, 0 |
["Freud”,7] 1,1, 0 |
["Heimlich™,1| 1, 1, 1 |
["Heimlich",2| 1, 1, 1 |
["Heimlich™,3| 1, 1, 1 |
["Heimlich™,4| 1, 1, 1 |
["Heimlich™,5| 1, 1, 1 |
["Heimlich",6| 1, 1, 0 |
["Heimlich",7| 1, 1, 0 |
["Eustachi”,1] 1,1, 1 |
["Eustachi”,2| 1,1, 1 |
["Eustachi”,3| 1,1, 1 |
["Eustachi™,4| 1,1, 1 |
["Eustachi”,5| 1, 1, 1 |
["Eustachi”,6] 1, 1, 1 |
["Eustachi”, 7| 1,1, 1 |
["Golgi”,1] 1,1, 1 |
["Golgi”,2| 1, 1, 1 |
["Golgi”,3| 1,1, 1 |
["Golgi”,4| 1,1, 1 |
["Golgi”,5| 1,1, 1 |
["Golgi",6] 1, 1, 1 |

["Golgi”,7] 1,1, 1 |;

Max weekly shift type constraints - desired maximum count of shifts per shift
type

param MAX_WEEKLY_SHIFTS[PROFESSIONALS*SHIFTS] := | "Early", "Late",
"Night" |

|"Fleming”| 7,7, 7 |

|"Freud”| 7,7, 7 |

|"Heimlich"| 7,7, 7 |

|"Eustachi”| 7,7, 7 |

|"Golgi”| 7,7, 2 |;

Decision variables - the values the solver needs to find
var ASSIGNED[DAYS*SHIFTS*PROFESSIONALS] binary;

Indicator variable to indicate the doctor works Saturday
var SATURDAY_INDICATOR[PROFESSIONALS] binary;

Indicator variable to indicate the doctor works Sunday
var SUNDAY_INDICATOR[PROFESSIONALS] binary;

Objective function - arbitrary maximisation for constraint satisfaction problems
maximize assigned:

sum <d,s,p> in DAYS*SHIFTS*PROFESSIONALS : ASSIGNEDId,s,p];

A doctor works at most one shift per day...
subto One_Shift_Per_Day:
forall <p> in PROFESSIONALS :

forall <d> in DAYS :

sum <s> in SHIFTS : ASSIGNEDI[d,s,p] <= 1;

Each shift must be covered by exactly one doctor...

subto Each_Shift_Covered:

forall <d> in DAYS :
forall <s> in SHIFTS :

sum <p> in PROFESSIONALS : ASSIGNED[d,s,p] == 1;

If a doctor works night shift, they cannot work early or late the next day...
subto Night_Shift_Continuity1:
forall <p> in PROFESSIONALS :
forall <d> in DAYS withd < 7:
vif (ASSIGNEDI[d,"Night”,p] >= 1) then
ASSIGNED[d+1,"Early",p] <=0

end;

subto Night_Shift_Continuity2:
forall <p> in PROFESSIONALS :
forall <d> in DAYS withd < 7:
vif (ASSIGNED[d,"Night",p] >= 1) then
ASSIGNED[d+1,"Late",p] <=0
end;
If doctor works night Sunday, they can’t work early or late Monday...
subto periodicity1:
forall <p> in PROFESSIONALS :
vif (ASSIGNED[7,"Night”,p] >= 1) then
ASSIGNEDI[1,"Early”,p] <=0

end;

subto periodicity2:

forall <p> in PROFESSIONALS :

vif (ASSIGNED[7,"Night",p] >= 1) then
ASSIGNED[1,"Late",p] <=0

end;

Indicates if doctor works Saturday
subto Sat_Indicator:
forall <p> in PROFESSIONALS :

sum <s> in SHIFTS : ASSIGNED[6,s,p] - SATURDAY_INDICATOR[p] == 0;

Indicates if doctor works Sunday
subto Sun_Indicator:
forall <p> in PROFESSIONALS :

sum <s> in SHIFTS : ASSIGNED[7,s,p] - SUNDAY_INDICATOR[p] == 0;

If a doctor works Saturday, they must work Sunday and vice versa
subto Weekend_Constraint:
forall <p> in PROFESSIONALS :

SATURDAY_INDICATORI[p] - SUNDAY_INDICATOR[p] == 0;

A doctor cannot work a shift they are not available for...
subto Availability:
forall <p> in PROFESSIONALS :

forall <d> in DAYS :

forall <s> in SHIFTS : ASSIGNED[d,s,p] <= AVAILABILITY[p,d,s];

A doctor can only work preferred maximum type of shifts per week

subto Shift_Tolerance:

forall <p> in PROFESSIONALS :
forall <s> in SHIFTS :

sum <d> in DAYS : ASSIGNED[d,s,p] <= MAX_ WEEKLY_SHIFTS[p,s];

