Challenge April - 2020

Doctor Planning

A solution with OPL CPLEX by Alex Fleischer
afleischer@fr.ibm.com

Here a small example of a tiny optimization model, in English, OPL

and Python

/00, bus, kids and optimization

300 kids need to travel to
the London zoo

The school may rent 40
seats and 30 seats buses for
500 and 400 £

How many buses of each to
minimize cost ?

We can call CPLEX from many languages

int nbKids=300;
float costBus40=500;
float costBus30=400;

dvar int+ nbBus40;
dvar int+ nbBus30;

minimize
costBus40*nbBus40
+nbBus30*costBus30;

subject to

{
40*nbBus40+

B nbBus30*30

>=nbKids;
}

from docplex.mp.model import Model
mdl = Model(name='buses’)

nbbus40 =
mdl.integer_var(name='nbBus40')
nbbus30 =

mdl.integer_var(name='nbBus30’)

mdl.add_constraint(nbbus40*40 +
nbbus30*30 >= 300, 'kids’)

mdl.minimize(nbbus40*500 +
nbbus30*400)

mdl.solve()

print(nbbus40.solution_value);
print{nbbus30.solution_value);

(C,C++,.NET,Java,Python ...) but using OPL leads to a clear
frontier between the model and the code that will embed the model.
(Not far from Decision Model and Notation (DMN) principle: “The
notation is designed to be readable by business and IT users alike.
This enables various groups to effectively collaborate in defining a

decision model”)

Now let’s move to the Doctor Planning challenge. (April 2020 DMC

challenge)



Since we’re in the COV19 era, let me thank all doctors and nurses
all over the world for what they do.

In OPL CPLEX no need to be very clever, we need to translate the
constraints.

range days=1..7;
range weekend=5..7;
int Friday=5;

int Saturday=6;

int Sunday=7;

{string} doctors={"Fleming","Freud","Heimlich","Eustachi","Golgi"};
{string} shifts={"early","late","night"};

assert card(doctors)==5;

tuple t

{
string doctor;
int day;
string shift;

}

{t} availabilities with doctor in doctors =

{<"Fleming",d,s> | d in {Friday,Saturday,Sunday},s in shifts}

union

{<"Freud",d,s> | d in days, s in {"early","late"}}

union

{<"Heimlich",d,s> | d in days,s in shifts : !((d in weekend) && (s=="night"))}
union

{<"Eustachi",d,s> | d in days,s in shifts}

union

{<"Golgi",d,s> | d in days,s in shifts}

)

// is that doctor working that day that shift ?
dvar boolean x[doctors][days][shifts];

// number of shifts per doctor
dvar int nbShifts[doctors];

// minimize max-min of nbShifts
minimize
max(d in doctors) nbShifts[d]-min(d in doctors) nbShifts[d];

// constraints
subject to
{
// nb of shifts
forall(d in doctors)
nbShifts[d]==sum(i in days,s in shifts) x[d][i][s];

// a doctor can only work one shift a day



forall(d in doctors,i in days) sum(s in shifts) x[d][i][s]«=1;
// specific constraints per doctor

forall(d in doctors,i in days,s in shifts:<d,i,s> not in availabilities)
x[d][1][s]==0;

// max 2 night shifts for Golgi
sum(d in days) x["Golgi"][d]["night"]<=2;
// night shift ==> next day off or next night shift
forall(d in doctors,i in days:(i+1) in days)
{ (x[d][1]["night"]==1) => (x[d][i+1]["early"]==0);
(x[d][i]["night"]==1) => (x[d][i+1]["late"]==0);
}

// periodic timetable add on
forall(d in doctors)
{
(x[d][Sunday]["night"]==1) => (x[d][1]["early"]==0);
(x[d][Sunday]["night"]==1) => (x[d][1]["late"]==0);
}

// both days of the week end or none

forall(d in doctors)
sum(s in shifts) x[d][Saturday][s]==sum(s in shifts) x[d][Sunday][s];

// 1 and only 1 doctor per shift

forall(i in days,s in shifts) sum(d in doctors) x[d][i][s]==1;

string whichDoctor[d in days][s in shifts]=
first({doc | doc in doctors:x[doc][d][s]==1});

execute display

{
for(var d in days)
{
write("Day ",d," : ");

for(var s in shifts) write(whichDoctor[d][s]," ");
writeln();

}

}

Which gives

Day 1 : Golgi Freud Heimlich
Day 2 : Freud Eustachi Golgi
Day 3 : Freud Eustachi Heimlich



Day 4 : Freud Eustachi Golgi

Day 5 : Heimlich Eustachi Fleming
Day 6 : Golgi Heimlich Fleming
Day 7 : Golgi Heimlich Fleming

NB: April 2@th, after an interesting comment from Damir Sudarevic I added a
constraint: if you work on Sunday night then you won’t work early Monday or late
Monday. (Which makes the timetable periodic)

I also added an objective: spread the workload in order to be as fair as possible.

The change took 10 minutes which shows again why relying on an Algebraic Modeling
Language helps. (Little model inertia, agility)

https://www.linkedin.com/pulse/optimization-aka-prescriptive-analytics-should-we-
write-fleischer/
PS:

Here we relied on Linear Programming. If we want to use Constraint Programming we
simply need to add “using CP;” at the beginning of the model

PPS:

This OPL CPLEX model can run on a machine with the free CPLEX community edition
but also in the cloud with IBM Watson Machine Learning.

Making Decision Optimization Simple : https://www.linkedin.com/pulse/making-decision-
optimization-simple-alex-fleischer/




