
Rule Modeling Challenge November 2017 Soldier Pay

Corticon - Mike Parish

During different service periods a soldier may have the following characteristics:

Rank {private, corporal, sergeant, lieutenant, captain}
Profession {fighter, driver, cook, officer}
Service Type {active, reserve, retired}
Unit {HQ, paratroopers, marines, infantry}
Combat {yes, no}

Pay rate is determined by aggregating the amounts according to these rules:

Base rate is $1/hr.
Private $1/hr., corporal $2/hr., sergeant $3/hr., lieutenant $4/hr., captain $5/hr.
Fighter $2/hr., driver $1/hr., cook $1/hr., officer $3/hr.
Active $2/hr., Reserve $1/hr.
HQ $1/hr., others $2/hr.
Combat $5/hr., non-combat $0/hr.

Example:

Rank: Private 1/1/2015-12/31/2015,
Profession: Fighter 1/1/2015-6/30/2015, Cook 7/1/2015-12/1/2015
Service Type: Active 1/1/2015-6/30/2015, Reserve 7/1/2015-12/1/2015
Unit: HQ 1/1/2015-12/31/2015
Combat: 4/1/2015-6/30/2015

On 6/1/2015 he was a private, a fighter, on active duty, at HQ, in combat, So, his pay rate was
1(base)+1(private)+2(fighter)+2(active)+1(HQ)+5(combat) = $12/hr

The challenge: assemble a single timeline for the soldier over a given service period that shows his/her
hourly pay rate in any given time. Flag any conflicting dates (e.g. can’t be a sergeant and a lieutenant at
the same time).
Additional challenge: What are all the different aggregated pay rates that apply and during which
periods?

An Example
The diagram shows a number of periods in a soldier’s life.
In each period you can see the rank, profession, service type, unit and combat status along with the pay
rates that applied at the time.

The soldier’s total pay rate in any period is the sum of the components
Notes:

1. Reserve status status starts immediately after active status to avoid the gap in the original
problem statement

2. The unstated non-combat periods have been added.

Let’s start with the simplest case.

Assume the pay rates and the soldier characteristics do
not change within a given period.

The problem is then very simple.

Total pay rate = base pay + rank pay + profession pay +
service pay + unit pay + combat pay

And all we need to do is define the rules that specify the
various pay amounts.

We can do this in several ways

1. Separate decision tables for each characteristic
2. Lookup tables defined in a rule sheet
3. Lookup tables defined in a database

In this example we’ll use method #1

For example, the rules for rank pay would be something like this:

This can be implemented as:

And there would be similar rule sheets for each of the other characteristics (see appendix).

A final rule sheet like this would then set the base rate and calculate the total pay rate

This is not very challenging however. All of the rule engines on the market could solve this just as easily.

What makes this problem more interesting is the fact that the soldier’s characteristics are not static.
They change over time. At different times they may have different combinations of rank, profession,
service, unit and combat. Even the pay rates also could change over time, but for now we’ll keep them
static.

So a soldier’s history will consist of many records each of which specifies a time period (start and end),
the characteristic (rank, profession, service, unit, combat) and the value of that characteristic (such as
private, corporal etc.)

Let’s start with a simple case using just rank and profession:

1/1/2015-12/31/2015 Rank = private
1/1/2015-6/30/2015 Profession = fighter
6/30/2015-12/31/2015 Profession = cook

Although three records are required to capture the soldier’s history there are really only TWO time
periods involved:

1/1/2015-6/30/2015 during which he was a private and a fighter pay=1+1+2
6/30/2015-12/31/2015 during which he was a private and a cook pay=1+1+1

So what we need to do is find a way to condense the separate time periods which contain a single
characteristic into a combined time period which contains all five of the characteristics for that time
period. Then we can simply send that set of records to the previously described “Determine Pay Rates”
to get the total pay in each period.

So this part of the problem boils down to taking a set of overlapping intervals and finding the non-
overlapping set that covers the entire period. Then we can go through and collect up the five
characteristics in each period.

The entire process might look like this.
1. Check the data to ensure the

dates are logical and that
values are correct and that
there are no gaps or overlaps
within a characteristic.

2. Reduce the history to non-
overlapping intervals. This is
done by taking all pairs of
overlapping intervals and
splitting as necessary to
remove the overlaps. This
continues until there are no
overlaps.

3. Merge the data from the five
intervals (rank, profession,
service, unit and combat) that
have the same start and end.

4. Calculate the total pay for each
of those intervals

5. Sort into ascending order of
start date for reporting
purposes

6. Clean up the original history
records that have now been
merged into the pay periods.

We’ll just examine the details of #2 and #3. In the appendix will be some discussion of how we write
rules to identify gaps and overlaps in intervals. This is something that has widespread applicability in
applications that handle dates (which is probably most of them)

Reduce History to Non-Overlapping Intervals
Using the simple example from before

1/1/2015-12/31/2015 Rank = private
1/1/2015-6/30/2015 Profession = fighter
6/30/2015-12/31/2015 Profession = cook

We can see that the first record (Rank=private) spans two Professions.

So we first split the rank record into two parts to match the fighter and cook periods.
This results in four records with no overlaps

1/1/2015-6/30/2015 Rank = private
6/30/2015-12/31/2015 Rank = private
1/1/2015-6/30/2015 Profession = fighter
6/30/2015-12/31/2015 Profession = cook

Now we can match up the starts and ends and merge the characteristics:

1/1/2015-6/30/2015 during which he was a private and a fighter
6/30/2015-12/31/2015 during which he was a private and a cook

Of course in the full problem we are doing this with five characteristics and possibly many more
overlaps, so how would Corticon deal with this?

First we observe that there are only six ways in which two intervals (blue and pink) can overlap:

CASE 1: both start together but blue is longer; Split the blue at the end of pink.
CASE 2: pink starts inside blue and ends after; Split both at the overlap;
CASE 3: pink is entirely within blue; Split blue into 3 parts.
CASE 4: pink starts after blue but they end together; Split blue.
CASE 5: exact overlap; No action required
CASE 6: no overlap; No action required.

This may be easier to follow with a diagram

The other two cases don’t require any action:

The rules need to locate the cases on the left and convert them to those on the right.

In decision table format it might look like this (in Natural Language format)

One possible implementation is:

But
why does this rule sheet only refer to two intervals (blue and pink) when there are five characteristics
(each with its own set of intervals) to be handled in the challenge.
Why don’t we need to handle all the possible overlaps between five intervals (a large number)?

It’s because Corticon will automatically apply this rule sheet if ANY two intervals overlap (including any
created during the execution of these rules) and it will continue doing so (two at a time) until there are
no more overlaps. It would work just as well even if there were one hundred different characteristics
(though it might take a little longer).

So basicallly we just need to model the rules for handling two intervals and then we let Corticon worry
about what to do when there are more.

Combine Intervals to Create Pay Periods
Now that we have eliminated any overlaps, we can gather up the five records (Rank, Profession, Service,
Unit, and Combat) that have the same start and end and combine them into one.

Here’s the Natural Language version

And the implementation:

Note that during the execution of the rule the intervals in lines f-i are the sames ones matched in a-d

A Test Case
Input
Nine input records are supplied

Each of which has attributes like this

Output
Three output records are created

Report

A More Complex Example

Produces this result

Notes:

1. Although the examples all start and end at midnight the same rules will work just fine for ANY
time period, even as short as a few seconds or longer than a year.

Appendix

Pay Rule Sheets

If there were more values within a pay rate we’d just add more columns to the appropriate rule sheet.
If there were more components to a soldier’s pay then we’d just add more rule sheets.
We might enhance these rule sheets with an additional column for unrecognized values and default the
pay rate to zero or issue an error message, though often it make the rule sheets less cluttered if the data
validation and error reporting is handled in a separate rule sheet. Generally we’d use the validation rule
sheets to flag the data as either “valid” or “invalid” and then set filters on the rule sheets to only process
the valid data. This could be more efficient when there is a lot of data involved.

How to check for gaps in intervals
We need to verify that for each component (e.g. Rank) of the soldier’s pay there are no gaps in the
history.

Here’s the Natural Language specification of the rules:

Since Corticon is based on set theory principles it supports both the “exists” and “forAll” operators.
These provide very powerful tools for writing rules about collections (sets) of objects.

Here is one possible implementation using the “exists” operator.

Also, this logic is entirely generic; it only refers to start, end, type and name and so can be used to check
for gaps in any kind of interval. For example, insurance coverage periods, employment history etc.

Test Case
In this test case Corticon finds a 1 second gap between the rank of corporal and sergeant.

How to check for overlaps in intervals
If two intervals overlap and are of the same type (e.g. Rank) but have different values (e.g private and
corporal) then that is considered an error.

Rules in Natural Language

An implementation of the rules

The rule messages

This logic is also generic and could be used to check for overlaps in other kinds of interval.

Test Case

Alternative Method of Calculating Pay using Lookup Tables
An alternative approach is to use a lookup table for the pay rates.

This does not need a separate decision table for each of the different characteristics.
Instead a set of pay rate records is either read from a data base or created in memory using a rule sheet.

The in-memory creation might look like this:

Doing it in a rule sheet makes it very easy to impose additional conditions on the pay rates.

We could instead read these values from a database. Corticon provides a means to read data directly
from a wide variety of databases during the execution of a rule sheet without the need to write code or
SQL.

If the pay rates varied over time then we’d include start and end dates too.

Then, instead of needing five rule sheets (one per characteristic), we can use a single generic rule sheet
like this:

The filter section matches the appropriate lookup table record to the rank, profession, service, unit or
combat and then the action section simply adds them up.

If the pay rates varied over time then the filter would have additional conditions that match not just on
category and value but also on date.

How to Handle Variable Pay Rates
So far we have assumed that the pay rates are static. But it’s quite possible that they too may have
different intervals when they apply. In fact each different pay rate might have its own separate time
line.

This is actually quite easy to incorporate into the current design.

Just as we reduced the soldier history to non-overlapping periods, so too we can reduce the pay rates to
non-overlapping intervals.
Then we can combine both so that each interval contains the soldier characteristics and the pay rates
that applied during that interval.

