
Decision Management Community
Challenge Nov 2017- Soldier Pay

A solution using SQL
(Bob Moore, JETset Business Consulting, 28 Nov 2017)

1 Problem Statement (cut and pasted from the web site)

During different service periods a soldier may have the following characteristics:

Rank {private, corporal, sergeant, lieutenant, captain}
Profession {fighter, driver, cook, officer}
Service Type {active, reserve, retired}
Unit {HQ, paratroopers, marines, infantry}
Combat {yes, no}

Pay rate is determined by aggregating the amounts according to these rules:
Base rate is $1/hr.
Private $1/hr., corporal $2/hr., sergeant $3/hr., lieutenant $4/hr., captain $5/hr.
Fighter $2/hr., driver $1/hr., cook $1/hr., officer $3/hr.
Active $2/hr., Reserve $1/hr.
HQ $1/hr., others $2/hr.
Combat $5/hr., non-combat $0/hr.

Example:
Rank: Private 1/1/2015 -12/31/2015,
Profession: Fighter 1/1/2015-6/30/2015, Cook 7/1/2015-12/1/2015
Service Type: Active 1/1/2015-6/30/2015, Reserve 7/1/2015-12/1/2015
Unit: HQ 1/1/2015-12/31/2015
Combat: 4/1/2015-6/30/2015

On 6/1/2015 he was a private, a fighter, on active duty, at HQ, in combat, So, his pay
rate was

1 (base) + 1 (private) +2 (fighter) +2 (active) +1 (HQ) +5 (combat) = $12/hr

The challenge:

assemble a single timeline for the soldier over a given service period that shows
his/her hourly pay rate in any given time. Flag any conflicting dates (e.g. can’t be
a sergeant and a lieutenant at the same time).

Additional challenge:
What are all the different aggregated pay rates that apply and during which
periods?

2 Initial Approach

Since I’m twiddling my thumbs a bit currently, I decided to have a bash at this
challenge. I started off without much thought to what kind of technology to use but
ended up thinking that a lot of it could be done just using relational tables and SQL, and
so I thought I’d see how far I could get just using that. The answer is pretty much all the
way. A fairly complete solution comprises only two lines of SQL (though one of these is
a rather long line, and to fully round things out I ended up with about ten SQL queries
overall)

There are those who will argue SQL is neither DMN nor a BRMS. But it is very powerful
tool for extracting information, and for problems where you have a few simple rules and
a mass of data, it can do a surprising amount of the heavy lifting for you. Indeed, for
many decision tables where both inputs and outputs only comprise atomic data items,
SQL is probably more powerful and flexible than something like FEEL.

My view when building decision systems has always been ‘the database is your friend’.
Playing to the strengths of both your BRMS and your DBMS can make life a lot easier,
a point which I hope this offering makes abundantly clear.

That said this solution is not without some limitation, so I’m planning on a second
solution probably based on Drools to provide a more rounded effort

3 Problem Interpretation

As with any problem statement, there are one or two areas open to different
interpretations. In this one, the ones I picked up on were:

 For a given characteristic, can a soldier exhibit different values for the same
characteristic at the same time (eg can they simultaneously be a fighter and
cook)? This is explicitly excluded for rank, but it makes little sense for most of the
others too (you can’t be in the infantry and in the marines at the same time). For
simplicity I’ve assumed that all the characteristics are single valued.

 A soldier can be ‘retired’, but what does that signify? Are we including army
pensions here? I’ve assumed if you are retired you don’t get any money, so you
can be ignored.

 What if any limitations are there on the start and end points of the periods given?
In theory if you got promoted at mid-day, your hourly pay would change at that
point. Again for simplicity, I’ve assumed the limit on granularity is the day (and
that everything takes place in the same time zone!)

In addition, I’ve assumed pay rates do not change with time and that the time line
covers the entire service period.

With a bit more work most of these assumptions can be relaxed.

4 Let’s Get Modelling

So, what is the decision we are modelling? In essence, we want to create for a
‘timeline’, I’m interpreting this as generating a report which says something like this:

 From the 20017-01-01 hourly rate is 6 SVU1
 From the 20017-02-01 hourly rate is 11 SVU
 From the 20017-04-01 hourly rate is 12 SVU
 From the 20017-06-01 hourly rate is 13 SVU
 From the 20017-07-01 hourly rate is 14 SVU
 From the 20017-09-01 hourly rate is 14 SVU
 From the 20017-11-01 hourly rate is 9 SVU

1 To internationalize the problem, I’ve opted a date format understood on both sides of the Atlantic and
Jack Vance’s ‘Standard Value Unit’ as currency which nobody uses (yet).

There are obviously other ways of doing representing the outcome, but I think they are
probably going to be equivalent. I’ve leapt ahead a little in presenting things in this form,
which is roughly where we end up, so there are few points to note on this proposed
format:

 We give start dates for an hourly rate, but end dates are implicitly set by a new
start date

 The hourly rate is given, but not an explanation of its origin
 We may get a sequence of entries on the report where the rate does not change

(e.g. after the 1st of July, there is an entry on the list for September, but the rate
is still 14 SVU/hour)

Broadly these are down to limitations of SQL, however as we will see it is easy to add
an ‘explanation’ of the hourly rates and the last point is simply down to the fact that
while the overall rate may not change, the explanation for it can.

Before getting down to trying to make decisions, we need to figure out what things we
are trying to make decisions about. Let’s build an object/data model. On the basis that
we have a fully additive model, it looks like we have three basic structures:

 Soldiers – who have a number of characteristics
 Characteristics – which have a type (Rank, Profession, …) a value (Private,

Fighter, …) and a period over which they apply (start and end dates)
 Pay Rates – which are associated with a specific value of a characteristic type

At this point it’s worth thinking about how we might build a solution. Pragmatically, in
any real-world solution all the information we’ve mentioned is going to be in a database,
probably a relational database. So, what is that relational database going to look like?

While the army is probably interested in a host of things about the solider like their age
their gender, their next of kin, none of this is relevant to the problem at hand. After a bit
of thought we find we don’t actually need a ‘Soldiers’ table. All we need something
which tells us for each soldier, what is the setting (value) of each characteristic between
certain times. Since ‘characteristics’ are time invariant (your rank may change but you
always have a rank), we can’t really call the table ‘Characteristic’, so I’ve used the term
‘Engagement’ to describe the idea that a particular characteristic takes a particular
value over a particular time period for a particular soldier.

The ‘Engagement’ Table will look something like this:

soldier characteristic setting start date end date

---- ---- ---- ---- ----
alice base base 2017-01-01 2018-01-01
alice rank private 2017-01-01 2018-01-01
alice profession fighter 2017-01-01 2018-01-01
alice service type active 2017-01-01 2018-01-01
alice unit paratroopers 2017-01-01 2018-01-01
alice combat yes 2017-01-01 2018-01-01
bill base base 2017-01-01 2018-01-01
bill rank private 2017-01-01 2017-07-01

bill rank corporal 2017-07-01 2018-01-01
bill profession driver 2017-01-01 2017-06-01
bill profession fighter 2017-06-01 2018-01-01
bill service type reserve 2017-01-01 2017-04-01
bill service type active 2017-04-01 2018-01-01
bill unit marines 2017-01-01 2017-09-01
bill unit paratroopers 2017-09-01 2018-01-01
bill combat no 2017-01-01 2017-02-01
bill combat yes 2017-02-01 2017-11-01
bill combat no 2017-11-01 2018-01-01
---- ---- ---- ---- ----

Note in this approach we treat all characteristics in the same manner. The characteristic
‘rank’ is treated in exactly the same way as ‘profession’. This has a couple of
consequences. Firstly, while the concept of a ‘characteristic’ is pervasive in the solution,
the logic never mentions a characteristic by name. Following immediately from this we
can see that adding (or removing or renaming) characteristics has no effect on the
decisioning part of the solution – you just add/remove/update database records. Which
is nice for extending the model.

Another point to notice is I’ve made a small alteration to the way engagements are
defined. The engagement ends before the ‘end date’, not on the end date. So, an
engagement applies for dates such that start date <= date < end date. This change is
not needed for generating the time line, but it makes validation (see below) much
simpler (it also helps were we relax the assumption that all characteristics are single
valued).

It is also worth noting that the example data above is ‘correct’ – in that at any date in
the service period, all the characteristics have one and only one value. Validating this
turns out to be the real challenge in providing a comprehensive solution.

Finally, as anyone building database schema should know, we want to specify what the
database key is. Clearly soldier and characteristic should form part of it, and since we
might swap back and forth between values of a characteristic during service, at least
one date must be involved. For validation purposes it makes most sense to say only
one engagement for a given characteristic can start on a given day, so the key is the
combination ‘soldier’ + ‘characteristic’ + ‘start date’ (you could use ‘end date’ instead or
use both dates if you like – but the validation process if you only choose one).

In addition to the ‘Engagement’ table, we also need a ‘Payment’ table – which is rather
simpler (and has the key ‘characteristic’ + ‘setting’):

characteristic setting hourly rate

base base 1
rank private 1
rank corporal 2
rank sergeant 3
rank lieutenant 4
rank captain 5
profession fighter 2

profession driver 1
profession cook 1
profession officer 3
service type active 2
service type reserve 1
unit hq 1
unit paratroopers 2
unit marines 2
unit infantry 2
combat yes 5
combat no 0

5 Building the timeline

Once we’ve got these tables in place and populated we can do some simple stuff with
SQL. For example, we can ask, what are the contributions to the hourly pay rate of
soldier ‘Bill’ on 4th July with a query like:

select soldier, e.characteristic, e.setting, hourly_rate

from engagement e, payment r

where soldier= 'bill' and start_date <= '2017-07-04' and end_date > '2017-07-04'

and e.setting = r.setting and e.characteristic = r.characteristic

 order by e.characteristic

If you’re not familiar with SQL this may be a bit intimidating, but all it is saying is ‘find
the engagements for Bill, which are happening on the date of interest, and then look up
the associated hourly rate for the given characteristic and characteristic setting. Note
we use <= for start dates and > for end dates as described above. The order by is not
needed but simply ensures the same output on different DBMS. The outcome is:

soldier characteristic setting hourly_rate

bill base base 1
bill combat yes 5
bill profession fighter 2
bill rank private 1
bill service type active 2
bill unit marines 2

So, we can just add numbers up in the last column to work out that Bill’s pay is 14 SVU
per hour. We can do even better! SQL can do the sum for us:

select soldier, sum(hourly_rate) as "hourly rate"

from engagement e, payment r

where soldier= 'bill' and start_date <= '2017-07-04' and end_date > '2017-07-04'

and e.setting = r.setting and e.characteristic = r.characteristic

group by soldier

Giving:

soldier hourly rate

bill 14

So, give me any date, I can use this bit of SQL to work out a soldier's hourly pay. Are
we done already?

Unfortunately, we’re not. I may know Bill’s hour rate of pay is 12 SVU on the 4th of April
and 14 SVU on 4th of July, but when did it change? And has it been some other value
in between (in fact, it was 13 SVU in June)?

It is clear we need to break the service period in smaller intervals, where in each of the
intervals, none of the characteristics change (so the pay rate doesn't change either).

Suppose we start off with ‘rank’. We split the overall service period into two intervals,
one from 2017-01-01 to 2017-06-30 and one from 2017-07-01 to 2017-12-31. Next let
us look at ‘profession’ There are two intervals again, but there is an overlap between
the ones for ‘rank’. Bill becomes a ‘fighter’ in June, before being promoted to corporal in
July. So, we need to create another interval. This process begins to look a bit
complicated. And we haven't looked at unit, combat status, or active status yet. Be
assured it can get very complicated!

Take a step back though, and think about the problem, and a much simpler way of
determining the intervals comes to light. Bill’s hourly rate of pay changes through the
year, but when and why does it change? It changes precisely when a new engagement
starts (note that a new engagement starting implicitly means an old one ending). So,
the intervals we are interested in are defined by the events of new engagements
commencing, so to find the intervals we only need to find the events – the start dates of
new engagements. A very simple bit of SQL:

select distinct start_date from engagement where soldier = 'bill' order by start_date

gives us the sequence of dates:

start_date

2017-01-01
2017-02-01
2017-04-01
2017-06-01
2017-07-01
2017-09-01
2017-11-01

 (the ‘distinct’ qualification gets rid of duplicates as occur on 2017-01-01 for example)

Lo and behold we have all the different intervals we are looking for!

And there’s more! By construction, we know that within an interval none of the
characteristics change their setting, so the pay rates don’t change, and in particular
they will equal the pay rates on the start date of the interval. So, if we use the rather
complicated SQL up above which calculates the hourly rate at a given date, using the

start date of the interval as our given date we will get the hourly rate which holds
throughout the interval.

So now we have one SQL statement which gives us the dates which define the timeline
of a soldiers pay, and another SQL statement which gives us the hourly rate on a given
date. If we can somehow put the two together we’ve got a solution.

And it proves quite easy. To do this let us first generalise the logic we used to find the
‘interesting’ dates which form our time line. Instead of looking for just the events which
change Bill’s hourly rate, we look at the events for all soldiers.

select distinct soldier, start_date from engagement

Then we wrap this as a view – a virtual table – which we call ‘period’

create view period as select distinct soldier, start_date from engagement

Then we add a join to this view in our SQL that gets the hourly rates. This results in this
slightly intimidating bit of SQL:

select p.soldier, p.start_date, sum(hourly_rate) as "hourly rate"

from engagement e, payment r, period p

where e.soldier = 'bill' and e.soldier = p.soldier

and e.start_date <= p.start_date and e.end_date > p.start_date

and e.setting = r.setting and e.characteristic = r.characteristic

group by p.soldier, p.start_date

order by p.soldier, p.start_date

It looks worse than it is, and I hope that having built up to this, those less familiar with
SQL can see where it comes from. Basically, we are using the ‘period’ view to select
which engagements in the ‘engagement’ table are of interest, where the clause:

e.soldier = 'bill' and e.soldier = p.soldier

makes sure we are only looking at information about the soldier of interest (Bill) and the
clause:

e.start_date <= p.start_date and e.end_date > p.start_date

picks out all engagements are active when a new engagement starts (the event
signifying a change in the way the monthly pay rate is made up). The clause:

e.setting = r.setting and e.characteristic = r.characteristic

simply matches up with the ‘payment’ table to enable us to extract the right rate. Finally

the clause: group by p.soldier, p.start_date links to the sum(hourly_rate) part of the

select, to ensure we have separate sums for each event date, rather than a sum over
everything.

If we run this query we get:

soldier start_date hourly rate

bill 2017-01-01 6
bill 2017-02-01 11
bill 2017-04-01 12
bill 2017-06-01 13
bill 2017-07-01 14
bill 2017-09-01 14
bill 2017-11-01 9

One can reasonably argue that the query is a bit more complicated than necessary.
Since we’ve specified the soldier of interest in the query, we don’t really need it in the

output, so we can omit p.soldier from the select the group by and the order by parts of

the query On the other hand if we omit the e.soldier = 'bill' clause from the original

query we can get the timelines for all the soldiers in the army at once (okay maybe
that’s not a good idea).

So, we’ve solved the problem (short of a bit of formatting) with just two SQL statements.
One to create the view and one to do the query (we can’t count the SQL to create and
populate the ‘engagement’ and ‘payment’ tables as they should already be part of the
database).

And if we want an explanation of where the hourly rate comes from we simply use a
slightly modified version of the query without the ‘sum’ and ‘group by’ bits which
includes the information about the characteristics involved:

select p.soldier, p.start_date, e.characteristic, e.setting, hourly_rate

from engagement e, payment r, period p

where e.soldier = 'bill' and e.soldier = p.soldier

and e.start_date <= p.start_date and e.end_date > p.start_date

and e.setting = r.setting and e.characteristic = r.characteristic

order by p.soldier, p.start_date, e.characteristic

Which gives us the full breakdown of the applicable rates per characteristic on the
dates defining the timeline:

soldier start_date characteristic setting hourly_rate

bill 2017-01-01 base base 1
bill 2017-01-01 combat no 0
bill 2017-01-01 profession driver 1
bill 2017-01-01 rank private 1
bill 2017-01-01 service type reserve 1
bill 2017-01-01 unit marines 2
bill 2017-02-01 base base 1
bill 2017-02-01 combat yes 5
bill 2017-02-01 profession driver 1
bill 2017-02-01 rank private 1
bill 2017-02-01 service type reserve 1
bill 2017-02-01 unit marines 2
bill 2017-04-01 base base 1

bill 2017-04-01 combat yes 5
bill 2017-04-01 profession driver 1
bill 2017-04-01 rank private 1
bill 2017-04-01 service type active 2
bill 2017-04-01 unit marines 2
bill 2017-06-01 base base 1
bill 2017-06-01 combat yes 5
bill 2017-06-01 profession fighter 2
bill 2017-06-01 rank private 1
bill 2017-06-01 service type active 2
bill 2017-06-01 unit marines 2
bill 2017-07-01 base base 1
bill 2017-07-01 combat yes 5
bill 2017-07-01 profession fighter 2
bill 2017-07-01 rank corporal 2
bill 2017-07-01 service type active 2
bill 2017-07-01 unit marines 2
bill 2017-09-01 base base 1
bill 2017-09-01 combat yes 5
bill 2017-09-01 profession fighter 2
bill 2017-09-01 rank corporal 2
bill 2017-09-01 service type active 2
bill 2017-09-01 unit paratroopers 2
bill 2017-11-01 base base 1
bill 2017-11-01 combat no 0
bill 2017-11-01 profession fighter 2
bill 2017-11-01 rank corporal 2
bill 2017-11-01 service type active 2
bill 2017-11-01 unit paratroopers 2

6 Validation

The Elephant in the room is validation. A critical assumption is what we’ve done so far
that the engagements for a specific characteristic do not have gaps or overlaps. In a
well organised database, there should be constraints to ensure that adding, removing,
or updating engagements meet this constraint, but sweeping it under the carpet like this
seems to be dodging a key part of the challenge.

Let’s bite the bullet, I didn’t start off this bit of the work with much confidence, but in
turns out we can do a fairly reasonable job. Before we start we must observe that SQL
doesn’t really do conditional actions, so we what are going to have to do is perform
some queries and then ‘interpret’ the results. We can’t get SQL to say: “if the result is
like this then there is a problem, otherwise the data is valid”. However, the interpretation
is not complicated as we’ll see – with one exception is basically a matter of saying does
this query return any results (which means there is something wrong), so any front end
– even the limited logic capabilities of a report generator should be able to cope.

Let’s start of by adding add some invalid data to our engagement table:

soldier characteristic setting start date end date

---- ---- ---- ---- ----
carol rank private 2017-01-01 2017-06-01
carol rank corporal 2017-02-01 2017-06-01
carol rank sergeant 2017-06-01 2018-01-01
carol service type active 2017-01-01 2017-04-01
carol service type reserve 2017-05-01 2017-09-01
carol service type active 2017-08-01 2018-01-01
carol unit hq 2017-01-01 2017-03-01
carol unit marines 2017-04-01 2017-03-01
carol unit paratroopers 2017-04-02 2018-01-01
carol combat yes 2016-01-01 2017-07-01
carol combat no 2017-07-01 2018-01-01
---- ---- ---- ---- ----

A manual inspection reveals missing data, and gaps and overlaps. But how easy are
they to find with SQL? First off let’s check that the engagements make sense in respect
of them ending after they start. All we need is a query like:

select characteristic, start_date, end_date

from engagement

where soldier = 'carol' and start_date >= end_date

(end dates must be strictly after start dates so we use >= not >). This gives the result:

characteristic start_date end_date

unit 2017-04-01 2017-03-01

Which tells us there is something wrong with carol’s unit engagements.

Next let’s check that we have an engagement for each characteristic. If we perform the
query:

select distinct characteristic

from payment

where characteristic not in (select characteristic from engagement where soldier = 'carol')

we are asking how many characteristics are defined (in the payment table) for which
the soldier (Carol) does not have an engagement. We get the result:

characteristic

profession

since we have no engagement record telling us what Carol’s profession is

If we substitute Bill for Carol in either of these queries no records are returned, so we
can conclude that we have (at least) one engagement for every characteristic, and each
engagement has a valid duration – which is what we want. Note we could just ‘count’
have many results we get. If we get 0, we’re okay, but then if we get more than 0 it
would be nice to know which characteristic is causing the problem.

Next a slightly subtler point – but important in managing the intervals. We want to
ensure that a soldier’s service starts and ends in a coherent fashion, so all the initial
engagements for each characteristic should start on the same date, and all the final
engagements should end on the same date. Finding when earliest any engagement
starts is pretty easy:

select min(start_date) from engagement where soldier = 'carol'

as is finding when the earliest of any engagement for a given characteristic:

select characteristic, min(start_date) as "start_date"

from engagement

where soldier = 'carol'

group by characteristic

The first of these gives a single result (2016-01-01) while the later gives:

characteristic start_date

base 2017-01-01
combat 2016-01-01
rank 2017-01-01
service type 2017-01-01
unit 2017-01-01

And it is evident that the ‘combat’ engagement start date is before all the others. For the
brave and bold we can actually bundle the two queries into one to give:

select distinct e1.characteristic from engagement e1

where (select min(start_date) from engagement where soldier = 'carol')

< (select min(start_date) from engagement

where characteristic = e1.characteristic and soldier = 'carol'

group by characteristic)

 order by characteristic

It looks horrible, but hopefully it is clear where it comes from looking at the earlier
queries. It returns a list of characteristics where the first engagement for the
characteristic starts later than the earliest engagement (which is implicitly the start of
the service period). For Carol it gives the result:

characteristic

base
rank
service type
unit

Which tells us which characteristics are undefined at the start of the Carol’s service. If
the query returns no results (as it does for Bill), the first engagement for each
characteristic all start on the same date. Swapping min for max, end_date for start_date
and > for <, we get the (equivalently convoluted) SQL:

select distinct e1.characteristic from engagement e1

where (select max(end_date) from engagement where soldier = 'carol')

> (select max(end_date) from engagement

where characteristic = e1.characteristic and soldier = 'carol'

group by characteristic)

 order by characteristic

which tells us which characteristics (if any) are undefined at the end of Carol’s service.
The outcome here is:

characteristic

combat
rank
service type
unit

since the end point of her ‘base’ engagement is 2019-01-01.

Of course, the most challenging part of the validation is looking for overlaps and gaps in
the engagements. Overlaps are actually easy to detect - you simply look for (distinct)
engagements for the same characteristic where the start date of one is before the end
date of the other. For gaps though we find at this point that SQL (or at least my
somewhat limited knowledge of it) begins to flounder. However, we can come up with
something which though not exactly elegant seems to meet the requirement.

The first step is to exclude a specific boundary case. Evidently if two engagements for
the same characteristic have the same start date or the same end date they must
overlap. The first possibility is excluded by our choice of the table key, so we only need
to check the second (note if we had included both dates in the key we’d need to check
the start date as well – one reason not to). The following query does the trick:

select e1.characteristic, e1.end_date

from engagement e1, engagement e2

where e1.soldier = 'carol' and e1.soldier = e2.soldier and e1.characteristic = e2.characteristic

and e1.start_date < e2.start_date and e1.end_date = e2.end_date

It’s may look a bit intimidating, but basically all this does is look for two distinct

engagement (e1 & e2), where the soldier and characteristic match, and the first starts

before the second (this is to ensure we only compare different engagements), but the
end date is the same. If any are found obviously we have two engagements for the
same characteristic with the same end date. The outcome for Carol is:

characteristic end_date

rank 2017-06-01
unit 2017-03-01

(note the engagement for ‘unit’ was already flagged as bad, because it ends before it
starts). For Bill, since the data for him is good, this query returns no results.

So, if our data has passed all the validations so far, we can assume that for any
characteristic, no two engagements start on the same date and no two end on the

same date. Now let’s think about how we can match up the end date of one
engagement with the start date of another for the same characteristic. Since each start
date is unique and each end date is unique, for any engagement, at most one other
engagement can have a start date which matches the first engagement’s end date. If
are no gaps or overlaps, the engagements for a characteristic form a sequence. The
end date of one is the start date of the next, except in the case of the last engagement
where the end date is the end of the soldier’s service.

From this analysis we deduce if there are no gaps and no overlaps, the number of
engagements where we can match the end date with the start date of another is always
exactly one less than the total number of engagements.

Now suppose there is a gap. Then the end date of the engagement before the gap
does not match the start date of the engagement after the gap, so we cannot match the
engagements and the count of matching engagements must be at least two less than
the total number of engagements. The analysis is a bit more complicated in the case of
an overlap, but the same result follows. Suppose there is an overlap, so the start date
of one interval is after the start date of the next. We’ve already excluded the possibility
that both have the same end date, so the end date at most one of the two engagements
can match the start point of the next engagement, so again we have lost (at least) one
engagement from our count of matching engagements, so our total of matching
engagements must once again be less than the total we get if there are no overlaps.

So, we can now conclude that if we can count the number of matching engagements for
a characteristic, and we find that the number is less than one minus the total number of
engagements for the characteristic, there must be a gap or an overlap.

It’s quite easy to count the number of engagements for each characteristic:

select characteristic, count(start_date) as count

from engagement where soldier = 'carol'

group by characteristic

the clause: group by e1.characteristic links to the count(e1.start_date) to say we

are counting per characteristic. This gives:

characteristic count

base 1
combat 2
rank 3
service type 3
unit 3

Counting the number of ‘matching’ engagements for each characteristic is somewhat
more challenging, but certainly possible, though the SQL is more convoluted. A query
which does the trick is:

select e1.characteristic, count(e1.start_date) as count

from engagement e1, engagement e2

where e1.soldier = 'carol' and e1.soldier = e2.soldier and e1.characteristic = e2.characteristic

and e1.start_date < e2.start_date and e1.end_date = e2.start_date

group by e1.characteristic

This is constructed in a similar way to the query we used to check for duplicate end

dates. Again we look for two distinct engagement (e1 & e2), where the soldier and

characteristic match, and the first starts before the second (which ensures they cannot
be the same engagement) and again we group by characteristic. However now we want
the end date of the first engagement to match the start date of the second (rather than
the end date). The result this time is:

characteristic count

combat 1
rank 2

There are a couple of frustrations I have here:

Firstly, if there are no matching engagements for a characteristic, instead of getting a
result with a count of zero, I just don’t get a result for that characteristic. In this example
are no matches for the characteristics ‘base’, ‘service type’ or ‘unit’, so these are
implicitly (rather than explicitly) zero engagements which have a matching successor.

Secondly, I don’t know any way to compare the outcomes of the two queries directly in
SQL. So, we need to summarise the outcome, and interpret it ourselves which is done
in this table (not that it would be a major challenge to implement this logic in any simple
front end):

characteristic total count matching count difference

base 1 0 (inferred) 1 (correct)
combat 2 1 1 (correct)
rank 3 2 1 (correct – but…)
service type 3 0 (inferred) 3 (overlap or gap)
unit 3 0 (inferred) 3 (overlap or gap)

Note that the number of matching engagements for ‘rank’ is one less that the total
number of engagements for ‘rank’, even though from the data, Carol is supposedly both
a private and a corporal from Feb to May. However, this overlap already causes a
validation exception because the end dates of the two engagements are identical. I got
caught out by this special case when first building the query, which is when I realised
we needed to have a validation check for engagements with matching end dates.

For comparison if we run the same queries for Bill we get:

characteristic count matching count difference

base 1 0 (inferred) 1 (correct)
combat 3 2 1 (correct)
profession 2 1 1 (correct)
rank 2 1 1 (correct)
service type 2 1 1 (correct)

unit 2 1 1 (correct)

7 Conclusion

This seems a complete solution, though certainly not the one I had expected.
Generating the timeline turned out to be astonishingly easy, though the validation is
rather more clunky.

One can argue that the solution is a bit brittle. Suppose the problem becomes more
complicated. Suppose you can be a ‘cook’ and a ‘fighter’ at the same time. Suppose (as
obviously will happen) that hourly rates change over time. Well the simple response to
this is any solution is going to need some modifications to accommodate these kind of
changes. In fact, both of these modifications are probably pretty easy to manage in a
pure SQL solution, since they really only need an extension to the idea of the ‘events’
which define the time line.

Obviously, all the manipulations done using the SQL can be done easily in a tool
capable of reasoning over patterns (e.g. Drools, ODM, Blaze Advisor, or some
functional language like Scala or Clojure), but to use them I am first going to have to
import the data from a database, so if I can do it directly on the database why bother
pulling the data in to manipulate it separately?

What would really start to cause problems if we start having dependencies between
characteristics (an obvious one is that if your ‘rank’ is lieutenant, your profession is self-
evidently ‘officer’). And the moment one introduces constraints in how you combine
payments which moves away from a simple an additive model you are really going to
need general-purpose reasoning capabilities than SQL provides. That said our SQL can
probably still work out the timeline, even if it can’t work out the appropriate hourly rates
within it.

So, considering extensions to the problem only reinforce the main point of I’m trying to
make with this solution. You can get a lot of mileage out of the database in getting to an
overall decision-making solution. Using the database to do as much work as possible
on the more straightforward aspects of the problem, means you have more time to
focus on the difficult (i.e. interesting) bits.

8 Appendix – RDBMS, Schema, Data and Queried

8.1 Which database to use

I initially built the solution using Apache Derby as my database, but re-ran everything
against Oracle to verify there are no syntactic quirks in the SQL. Apart from some
potential issues with the date format for the inserts all the SQL here should work from a
command line tool like SQLPlus and its equivalents for DB2, SQL Server, mySQL etc.

On a technical point almost most of the queries used here are parameterised by the
name of the soldier of interest. Once one fixes on a specific RDBMS tool, one can
simply reduce the SQL to a stored procedure taking the name as a parameter which

simplifies it all, but I’ve not gone down to this level as it gets very dependent on the
database you are using.

8.2 Schema Definition

The database schema is as follows:

create table engagement

(

 soldier varchar(12) not null,

 characteristic varchar(12) not null,

 setting varchar(12) not null,

 start_date date not null,

 end_date date not null

);

create table payment

(

 characteristic varchar(12) not null,

 setting varchar(12) not null,

 hourly_rate integer not null

);

create view period as select distinct soldier, start_date from engagement;

alter table engagement

 add constraint engagement_pk primary key (soldier, characteristic, start_date);

alter table payment

 add constraint payment_pk primary key (characteristic, setting);

commit;

8.3 Test Data

To generate the data used in the description you can execute the following insert
statements. Note that in general the default date format may not be correct.
Specifically, for an Oracle database you will probably need to modify it with an alter
session directive looking like this

ALTER SESSION SET NLS_DATE_FORMAT='YYYY-MM-DD';

The insert statements:

-- engagement table data

insert into engagement values('alice', 'base', 'base', '2017-01-01', '2018-01-01');

insert into engagement values('alice', 'rank', 'private', '2017-01-01', '2018-01-01');

insert into engagement values('alice', 'profession', 'fighter', '2017-01-01', '2018-01-01');

insert into engagement values('alice', 'service type', 'active', '2017-01-01', '2018-01-01');

insert into engagement values('alice', 'unit', 'paratroopers', '2017-01-01', '2018-01-01');

insert into engagement values('alice', 'combat', 'yes', '2017-01-01', '2018-01-01');

insert into engagement values('bill', 'base', 'base', '2017-01-01', '2018-01-01');

insert into engagement values('bill', 'rank', 'private', '2017-01-01', '2017-07-01');

insert into engagement values('bill', 'rank', 'corporal', '2017-07-01', '2018-01-01');

insert into engagement values('bill', 'profession', 'driver', '2017-01-01', '2017-06-01');

insert into engagement values('bill', 'profession', 'fighter', '2017-06-01', '2018-01-01');

insert into engagement values('bill', 'service type', 'reserve', '2017-01-01', '2017-04-01');

insert into engagement values('bill', 'service type', 'active', '2017-04-01', '2018-01-01');

insert into engagement values('bill', 'unit', 'marines', '2017-01-01', '2017-09-01');

insert into engagement values('bill', 'unit', 'paratroopers', '2017-09-01', '2018-01-01');

insert into engagement values('bill', 'combat', 'no', '2017-01-01', '2017-02-01');

insert into engagement values('bill', 'combat', 'yes', '2017-02-01', '2017-11-01');

insert into engagement values('bill', 'combat', 'no', '2017-11-01', '2018-01-01');

insert into engagement values('carol', 'base', 'base', '2017-01-01', '2019-01-01');

insert into engagement values('carol', 'rank', 'private', '2017-01-01', '2017-06-01');

insert into engagement values('carol', 'rank', 'corporal', '2017-02-01', '2017-06-01');

insert into engagement values('carol', 'rank', 'sergeant', '2017-06-01', '2018-01-01');

insert into engagement values('carol', 'service type', 'active', '2017-01-01', '2017-04-01');

insert into engagement values('carol', 'service type', 'reserve', '2017-05-01', '2017-09-01');

insert into engagement values('carol', 'service type', 'active', '2017-08-01', '2018-01-01');

insert into engagement values('carol', 'unit', 'hq', '2017-01-01', '2017-03-01');

insert into engagement values('carol', 'unit', 'marines', '2017-04-01', '2017-03-01');

insert into engagement values('carol', 'unit', 'paratroopers', '2017-04-02', '2018-01-01');

insert into engagement values('carol', 'combat', 'yes', '2016-01-01', '2017-07-01');

insert into engagement values('carol', 'combat', 'no', '2017-07-01', '2018-01-01');

-- payment table data

insert into payment values('base', 'base', 1);

insert into payment values('base', 'retired', 0);

insert into payment values('rank', 'private', 1);

insert into payment values('rank', 'corporal', 2);

insert into payment values('rank', 'sergeant', 3);

insert into payment values('rank', 'lieutenant', 4);

insert into payment values('rank', 'captain', 5);

insert into payment values('rank', 'retired', 0);

insert into payment values('profession', 'fighter', 2);

insert into payment values('profession', 'driver', 1);

insert into payment values('profession', 'cook', 1);

insert into payment values('profession', 'officer', 3);

insert into payment values('profession', 'retired', 0);

insert into payment values('service type', 'active', 2);

insert into payment values('service type', 'reserve', 1);

insert into payment values('service type', 'retired', 0);

insert into payment values('unit', 'hq', 1);

insert into payment values('unit', 'paratroopers', 2);

insert into payment values('unit', 'marines', 2);

insert into payment values('unit', 'infantry', 2);

insert into payment values('unit', 'retired', 0);

insert into payment values('combat', 'yes', 5);

insert into payment values('combat', 'no', 0);

insert into payment values('combat', 'retired', 0);

commit;

8.4 The Queries

The queries are as follows:

-- EXAMPLE QUERIES LEADING TO A SOLUTION

-- the following query gives the engagements and associated pay rates for a particular soldier

-- (Bill) on the 4th of July 2017 (Note above comments on date formats)

select soldier, e.characteristic, e.setting, hourly_rate

from engagement e, payment r

where soldier= 'bill' and start_date <= '2017-07-04' and end_date > '2017-07-04'

and e.setting = r.setting and e.characteristic = r.characteristic order by e.characteristic;

-- the following query gives the total hourly rate for a particular soldier

-- (Bill) on the 4th of July 2017

select soldier, sum(hourly_rate) as "hourly rate"

from engagement e, payment r

where soldier= 'bill' and start_date <= '2017-07-04' and end_date > '2017-07-04'

and e.setting = r.setting and e.characteristic = r.characteristic

group by soldier;

-- the following query identifies all the engagements for a particular soldier

-- (Bill) during his service period. It uses the view 'period' rather than the

-- table engagement

select distinct start_date from period where soldier = 'bill' order by start_date;

-- *************************End of examples *********************************

-- QUERIES WHICH FORM THE SOLUTION TO GENERATING A TIMELINE

-- the following query produces a timeline of the hourly pay for a particular soldier

-- (Bill) during his service period.

select p.soldier, p.start_date, sum(hourly_rate) as "hourly rate"

from engagement e, payment r, period p

where e.soldier = 'bill' and e.soldier = p.soldier

and e.start_date <= p.start_date and e.end_date > p.start_date

and e.setting = r.setting and e.characteristic = r.characteristic

group by p.soldier, p.start_date order by p.soldier, p.start_date;

-- the following query produces a timeline showing way in which the hourly pay for

-- a particular soldier (Bill) is made up during his service period.

select p.soldier, p.start_date, e.characteristic, e.setting, hourly_rate

from engagement e, payment r, period p

where e.soldier = 'bill' and e.soldier = p.soldier

and e.start_date <= p.start_date and e.end_date > p.start_date

and e.setting = r.setting and e.characteristic = r.characteristic

order by p.soldier, p.start_date, e.characteristic;

-- *********************End of Timeline solution*****************************

-- QUERIES DESIGNED TO VALIDATE THE CORRECTNESS OF THE INPUT DATA

-- **************************CHECKS FOR CAROL**************************

-- CHECK 1: the following query checks engagements for a particular soldier

-- (Carol) start before they end

select characteristic, start_date, end_date from engagement

where soldier = 'carol' and start_date >= end_date;

-- CHECK 2: the following query checks engagements for a particular soldier

-- (Carol) to ensure all characteristics are defined

select distinct characteristic from payment

where characteristic not in (select characteristic from engagement where soldier = 'carol');

-- CHECK 3: the following query checks the initial engagements for a particular soldier

-- (Carol) all start at the same time

select distinct e1.characteristic from engagement e1

where (select min(start_date) from engagement where soldier = 'carol') <

 (select min(start_date) from engagement

 where characteristic = e1.characteristic and soldier = 'carol' group by characteristic)

order by characteristic;

-- CHECK 4: the following query checks the final engagements for a particular soldier

-- (Carol) all end at the same time

select distinct e1.characteristic from engagement e1

where (select max(end_date) from engagement where soldier = 'carol') >

 (select max(end_date) from engagement

 where characteristic = e1.characteristic and soldier = 'carol' group by characteristic)

order by characteristic;

-- CHECK 5: the following query checks no two engagements for a particular

-- characteristic and a particular soldier (Carol) end at the same time

select e1.characteristic, e1.end_date from engagement e1, engagement e2

where e1.soldier = 'carol' and e1.soldier = e2.soldier and e1.characteristic = e2.characteristic

and e1.start_date < e2.start_date and e1.end_date = e2.end_date;

-- CHECK 6 part 1: the following query counts the number of engagements for a

-- particular characteristic and a particular soldier (Carol)

select characteristic, count(start_date) as count from engagement

where soldier = 'carol' group by characteristic;

-- CHECK 6 part 2: the following query counts the number of 'matched' engagements

-- for a particular characteristic and a particular soldier (Carol)

select e1.characteristic, count(e1.start_date) as count

from engagement e1, engagement e2

where e1.soldier = 'carol' and e1.soldier = e2.soldier and e1.characteristic = e2.characteristic

and e1.start_date < e2.start_date and e1.end_date = e2.start_date

group by e1.characteristic;

-- *********************End of Checks for Carol*****************************

-- **************************CHECKS FOR BILL**************************

-- CHECK 1: the following query checks engagements for a particular soldier

-- (Bill) start before they end

select characteristic, start_date, end_date from engagement

where soldier = 'bill' and start_date >= end_date;

-- CHECK 2: the following query checks engagements for a particular soldier

-- (Bill) to ensure all characteristics are defined

select distinct characteristic from payment

where characteristic not in (select characteristic from engagement where soldier = 'bill');

-- CHECK 3: the following query checks the initial engagements for a particular soldier

-- (Bill) all start at the same time

select distinct e1.characteristic from engagement e1

where (select min(start_date) from engagement where soldier = 'bill') <

 (select min(start_date) from engagement

 where characteristic = e1.characteristic and soldier = 'bill' group by characteristic)

order by characteristic;

-- CHECK 4: the following query checks the final engagements for a particular soldier

-- (Bill) all end at the same time

select distinct e1.characteristic from engagement e1

where (select max(end_date) from engagement where soldier = 'bill') >

 (select max(end_date) from engagement

 where characteristic = e1.characteristic and soldier = 'bill' group by characteristic)

order by characteristic;

-- CHECK 5: the following query checks no two engagements for a particular

-- characteristic and a particular soldier (Bill) end at the same time

select e1.characteristic, e1.end_date from engagement e1, engagement e2

where e1.soldier = 'bill' and e1.soldier = e2.soldier and e1.characteristic = e2.characteristic

and e1.start_date < e2.start_date and e1.end_date = e2.end_date;

-- CHECK 6 part 1: the following query counts the number of engagements for a

-- particular characteristic and a particular soldier (Bill)
select characteristic, count(start_date) as count from engagement

where soldier = 'bill' group by characteristic;

-- CHECK 6 part 2: the following query counts the number of 'matched' engagements

-- for a particular characteristic and a particular soldier (Bill)

select e1.characteristic, count(e1.start_date) as count

from engagement e1, engagement e2

where e1.soldier = 'bill' and e1.soldier = e2.soldier and e1.characteristic = e2.characteristic

and e1.start_date < e2.start_date and e1.end_date = e2.start_date

group by e1.characteristic;

-- *********************End of Checks for Bill *****************************

-- *********************End of Validation Logic*****************************

