

Using Machine Learning, Business Rules, and Optimization for Flash Sale Pricing

Igor Elbert, Distinguished Data Scientist, Gilt.com Dr. Jacob Feldman, CTO, OpenRules, Inc.

Building a Pricing System for an Online Retailer

• GILT:

GILT

- Online retailer selling curated collections of fashion products via flash sales
- Expected Functionality:
 - Utilize sales history to predict demand for everchanging assortments of thousands of products
 - Collaborate with business domain experts to quickly generate optimal prices that can immediately go live on site

- A combination of Machine Learning, Business Rules, and Multi-Objective Optimization:
 - Predictive Analytics
 - R, xgboost
 - Business Rules
 - OpenRules
 - Optimization
 - OpenRules/JSR-331 with various linear solvers

Before Gilt – sample sales

Gilt pioneered online "flash sales" in US

LIFESTYLE MARKETING PLATFORM

Gilt is a members-only lifestyle destination and ecommerce site that provides insider access to today's top designer brands as well as exclusive local experiences.

9.7M+

active members

7K+

packages shipped daily

1M+

active mobile app users*

1B+

highest press impressions from a single partnership**

100

countries shipped to

50%

of revenue is generated via mobile purchases

1.5M+

social media followers

GILT

How to price thousands of items every day?

Sergio Rossi Secret Pointed-Toe Pump #sm \$349

Aperiai Leather Fringed Pump \$1.me \$449

Maiden Lane Classic Leather Pointed-Toe Pump \$50 \$79

Corso Como Weisley Laser-Cut Leather Pump 6es9 \$89

Furla

6400 \$249

Giselle Pointed-Toe Pump

Giuseope Zanotti Pointed-Toe Pump And \$270

Sergio Rossi Godiva Leather Pointed-Toe Pump 4613 \$200

Corso Como Wellsley Laser-Out Leather Pump tim \$89

8

 Predict demand for every product in a given sale for all possible prices

 Find the best combination of prices to satisfy business objectives (weighted mix of revenue, margin, sell-through, etc)

Present price recommendations to business

9

How it's done

GILT₁₀

1. Data Preparation

GILT₁₃

2. Demand Prediction

Example: Predicted Demand and Revenue at different Prices

GILT₁₄

3. Price Optimization

- Goals:
 - optimize per product and per sale
 - allow business user to set goals (revenue, sell-through, margin, or combination)

• Iterate quickly

Sample Rules

Minimal Number of Previous Exposures		Variable	<oper></oper>	Value	
ls	0	Minimum Discount from MSRP		20	Initial Sales
ls	0	Percent Difference from Original Price	ls	40	
ls	0	Minimal Margin Percent	IS	40	
ls	0	Minimal Sell Through Percent		20	
ls	1	Minimum Discount from MSRP		20	Repeat Sales
ls	1	Percent Difference from Original Price	ls	40	
ls	1	Minimal Margin Percent		30	
ls	1	Minimal Sell Through Percent		20	
ls	10	Minimum Discount from MSRP		60	Exit Sales
ls	10	Percent Difference from Original Price	ls	40	
ls	10	Minimal Margin Percent	15	5	
ls	10	Minimal Sell Through Percent		40	

Optimization Weights

	Variable	<oper></oper>	Value
Gross Revenue Weight			2
Gross Margin Weight		ls	5
Gross Sell Through Weight			3

Sample Results For A Sale:

Target	Revenue	Margin	Sell-through
Max Revenue	\$6,606	58%	23%
Max Margin	\$4,289	67%	16%
Max Sell-through	\$5,628	48%	24%

GILT₁₇

Best predictors of demand (number of units sold):

- Number of units available
- Price, Discount, MSRP
- Item price relative to the prices of other items in the sale
- Product attributes, etc

Prediction changes: Before: predict demand for all acceptable prices Now: same as before but for all possible totals

Item	Price	Total	Demand
Ball	\$2	\$ 3	4
Ball	\$2	\$4	4
Ball	<i>\$2</i>	\$5	4
Ball	\$2	\$6	3
Ball	\$2	\$7	3
Ball	\$4	\$3	2
Ball	\$4	\$4	2
Ball	\$4	\$5	2
Ball	\$4	\$6	2
Ball	\$4	\$7	2
Pen	\$1	<i>\$3</i>	7
Pen	\$1	\$4	7
Pen	\$1	\$5	8
Pen	\$1	\$6	8
Pen	\$1	\$7	8
Pen	\$3	\$3	1
Pen	\$3	\$4	1
Pen	\$3	\$5	1
Pen	\$3	\$6	1

\$3

Pen

\$7

0

Example

Prices: \$1 or \$3

Price total: \$3 - \$7

- Apply constraints early -
- Calculate all the totals -

GILT

- All items must be priced
- Each item must have only one price
- Sum of all prices should equal to one and only one total

GILT

Problem definition (MathProg)

set Look; set Price := 1..10000; set Total := 1..100000;

set Look_Price_Total within {l in Look, p in Price, t in Total};
param price {(l,p,t) in Look_Price_Total}, >= 0, integer := p;
param demand {Look_Price_Total}, >= 0, integer;
param revenue{(l,p,t) in Look_Price_Total} := price[l,p,t] * demand[l,p,t];

param orig_price {Look_Price_Total}, >= 0, integer, default 0; param base_price {Look_Price_Total}, >= 0, integer, default 0; param msrp_price {Look_Price_Total}, >= 0, integer, default 0; param num_units_available {Look_Price_Total}, >= 0, integer, default 0;

set Unique_Total := setof{(l,p,t) in Look_Price_Total} t;

var Use {Look_Price_Total} binary; var Use_Total {Unique_Total} binary;

maximize Revenue: sum{(l,p,t) in Look_Price_Total} revenue[l,p,t] * Use[l,p,t];

- s.t. one_of_each{l in Look}: sum{(l,p,t) in Look_Price_Total} Use[l,p,t] = 1;
- s.t. single_total: sum{t in Unique_Total} Use_Total[t] = 1;
- s.t. price_sum_is_total{t in Unique_Total}:

sum{(l,p,t) in Look_Price_Total} price[l,p,t] * Use[l,p,t] = t * Use_Total[t];

set Look := Ball Pen;					
param: Look_Price_Total: demand :=					
Ball	2	3	4		
Ball	2	4	4		
Ball	2	5	4		
Ball	2	6	3		
Ball	2	7	3		
Ball	4	3	2		
Ball	4	4	2		
Ball	4	5	2		
Ball	4	6	2		
Ball	4	7	2		
Pen	1	3	7		
Pen	1	4	7		
Pen	1	5	8		
Pen	1	6	8		
Pen	1	7	8		
Pen	3	3	1		
Pen	3	4	1		
Pen	3	5	1		
Pen	3	6	1		
Pen	3	7	0;		

GILT Modeling and Solving Real-world Problems

- We modeled the problem using OpenRules and JSR-331 Standard
- Real optimization problems consist of hundreds of thousands records:
 - We used JSR-331 Constraint Solvers to validate the problem correctness. But actual problems were too large for constraint solvers
 - We tried various JSR-331 Linear Solvers (GLPK, LP-Solve, COIN suite, SCIP, and others)
 - None was able to solve large problems in a reasonable time or at all

GILT How We Solved the Production Problem

- OpenRules was able to create a rules-based decision model that automatically splits one large problem into a set of smaller sub-problems (one for every individual total cost)
- While there may be thousands of sub-problems, JSR-331 Linear Solvers are able to quickly solve them
- Then OpenRules decision model analyzes all found solutions to come up with the optimal solution that satisfy a configurable combined objective – a maximal combination of Revenue, Margin, and Sell-Through
- Big advantage of this approach: it can be parallelized to solve even much larger problems!

GILT Conclusion

- We applied a combination of Machine Learning, Business Rules, and Multi-Objective Optimization to solve a realworld operational problem – flash sale price optimization
- The pricing methodology and tools that support each of these 3 decision management techniques were readily available and quite powerful
- However, the production-level problems required a special ingenious approach to actually solve these problems

Questions?

Igor Elbert <u>ielbert@gilt.com</u>

Jacob Feldman