

Using Machine Learning, Business Rules, and Optimization for Flash Sale Pricing

Igor Elbert, Distinguished Data Scientist, Gilt.com Dr. Jacob Feldman, CTO, OpenRules, Inc.

- GILT:
- Online retailer selling curated collections of fashion products via flash sales
- Expected Functionality:
- Utilize sales history to predict demand for everchanging assortments of thousands of products
- Collaborate with business domain experts to quickly generate optimal prices that can immediately go live on site
- A combination of Machine Learning, Business Rules, and Multi-Objective Optimization:
- Predictive Analytics
- R, xgboost
- Business Rules
- OpenRules
- Optimization
- OpenRules/JSR-331 with various linear solvers

Before Gilt - sample sales

Gilt pioneered online "flash sales" in US

LIFESTYLE MARKETING PLATFORM

Gilt is a members-only lifestyle destination and ecommerce site that provides insider access to today's top designer brands as well as exclusive local experiences.

GILT
 Global Reach

9.7M+

active members

7K+

packages shipped daily

1M+

active mobile app users*

1B+

highest press impressions from a single partnership**

400

sales launch weekly

100

 countries shipped to
50\%

of revenue is generated via mobile purchases

$1.5 \mathrm{M}+$

social media followers

GILT

How to price thousands of items every day?

Sergio Rossi
Secret Pointed-Toe Pump (eson \$349

Aperial
Leather Fringed Pump
trame \$.449

2lent

Giusegpe Zenotil
Pcinted-Toe Pump
4 (20) $\$ 897$

PURE NAVY Pointed-Toe Pump $\$ 99 . \$ 89$

Maiden Lane
Classic Leather Pointed-Toe Pump enter $\$ 79$

Firia
Gisele Painted-Toe Pump 4e00 \$2.49

Corso Camo
Wetsley Laser-Out Leather Purna 4×58589

Conno Come
Welskoy Later-Cn Leather Pump

GIL'T

- Predict demand for every product in a given sale for all possible prices
- Find the best combination of prices to satisfy business objectives (weighted mix of revenue, margin, sell-through, etc)
- Present price recommendations to business

How it's done

1. Data Preparation

2. Demand Prediction

Example: Predicted Demand and Revenue at different Prices

3. Price Optimization

- Goals:
- optimize per product and per sale
- allow business user to set goals (revenue, sell-through, margin, or combination)
- Iterate quickly

Sample Rules

Minimal Number of Previous Exposures		Variable	<oper>	Value	
Is	0	Minimum Discount from MSRP	Is	20	Initial Sales
Is	0	Percent Difference from Original Price		40	
Is	0	Minimal Margin Percent		40	
Is	0	Minimal Sell Through Percent		20	
Is	1	Minimum Discount from MSRP	Is	20	Repeat Sales
Is	1	Percent Difference from Original Price		40	
Is	1	Minimal Margin Percent		30	
Is	1	Minimal Sell Through Percent		20	
Is	10	Minimum Discount from MSRP	Is	60	Exit Sales
Is	10	Percent Difference from Original Price		40	
Is	10	Minimal Margin Percent		5	
Is	10	Minimal Sell Through Percent		40	

Optimization Weights

Variable
<oper>
Value

| Gross Revenue Weight | | 2 |
| :--- | :---: | :---: | :---: |
| Gross Margin Weight | Is | |
| Gross Sell Through Weight | | 5 |

Sample Results For A Sale:

Target	Revenue	Margin	Sell-through
Max Revenue	$\$ 6,606$	58%	23%
Max Margin	$\$ 4,289$	67%	16%
Max Sell-through	$\$ 5,628$	48%	24%

GILT
 Per sale optimization

Best predictors of demand (number of units sold):

- Number of units available
- Price, Discount, MSRP
- Item price relative to the prices of other items in the sale
- Product attributes, etc

Prediction changes:
Before: predict demand for all acceptable prices
Now: same as before but for all possible totals

GILT

Example

Prices: \$2 or \$4

Prices: \$1 or \$3

Price total: \$3-\$7

- Apply constraints early
- Calculate all the totals

Item	Price	Total	Demand
Ball	\$2	\$3	4
Ball	\$2	\$4	4
Ball	\$2	\$5	4
Ball	\$2	\$6	3
Ball	\$2	\$7	3
Ball	\$4	\$3	2
Ball	\$4	\$4	2
Ball	\$4	\$5	2
Ball	\$4	\$6	2
Ball	\$4	\$7	2
Pen	\$1	\$3	7
Pen	\$1	\$4	7
Pen	\$1	\$5	8
Pen	\$1	\$6	8
Pen	\$1	\$7	8
Pen	\$3	\$3	1
Pen	\$3	\$4	1
Pen	\$3	\$5	1
Pen	\$3	\$6	1
Pen	\$3	\$7	0

GILT

Multiple Knapsack Problem / Bin-packing problem

- All items must be priced
- Each item must have only one price
- Sum of all prices should equal to one and only one total

```
set Look;
set Price := 1..10000;
set Total := 1..100000;
set Look_Price_Total within {I in Look, p in Price, t in Total};
param price {(l,p,t) in Look_Price_Total}, >= 0, integer := p;
param demand {Look_Price_Total}, >= 0, integer;
param revenue{(l,p,t) in Look_Price_Total} := price[l,p,t] * demand[l,p,t];
param orig_price {Look_Price_Total}, >= 0, integer, default 0;
param base_price {Look_Price_Total}, >= 0, integer, default 0;
param msrp_price {Look_Price_Total}, >= 0, integer, default 0;
param num_units_available {Look_Price_Total}, >= 0, integer, default 0;
set Unique_Total := setof{(l,p,t) in Look_Price_Total} t;
var Use {Look_Price_Total} binary;
var Use_Total {Unique_Total} binary;
maximize Revenue: sum{(l,p,t) in Look_Price_Total} revenue[l,p,t] * Use[l,p,t];
s.t. one_of_each{l in Look}: sum{(l,p,t) in Look_Price_Total} Use[l,p,t] = 1;
s.t. single_total: sum{t in Unique_Total} Use_Total[t] = 1;
s.t. price_sum_is_total{t in Unique_Total}:
    sum{(l,p,t) in Look_Price_Total} price[I,p,t] * Use[l,p,t] = t * Use_Total[t];
```

```
set Look := Ball Pen;
```

param: Look_Price_Total: demand :=
Ball 234
Ball 244
Ball 254
Ball 263
Ball 273
Ball 432
Ball 442
Ball $4 \quad 5 \quad 2$
Ball $4 \quad 6 \quad 2$
Ball $4 \quad 7 \quad 2$
$\begin{array}{llll}\text { Pen } & 1 & 3 & 7\end{array}$
$\begin{array}{llll}\text { Pen } & 1 & 4 & 7\end{array}$
$\begin{array}{llll}\text { Pen } & 1 & 5 & 8\end{array}$
$\begin{array}{llll}\text { Pen } & 1 & 6\end{array}$
$\begin{array}{llll}\text { Pen } & 1 & 7 & 8\end{array}$
$\begin{array}{llll}\text { Pen } & 3 & 1\end{array}$
Pen $3 \quad 4 \quad 1$
$\begin{array}{llll}\text { Pen } & 3 & 5 & 1\end{array}$
Pen $3 \quad 6 \quad 1$
Pen 370 ;

Modeling and Solving Real-world Problems

- We modeled the problem using OpenRules and JSR-331 Standard
- Real optimization problems consist of hundreds of thousands records:
- We used JSR-331 Constraint Solvers to validate the problem correctness. But actual problems were too large for constraint solvers
- We tried various JSR-331 Linear Solvers (GLPK, LP-Solve, COIN suite, SCIP, and others)
- None was able to solve large problems in a reasonable time or at all
- OpenRules was able to create a rules-based decision model that automatically splits one large problem into a set of smaller sub-problems (one for every individual total cost)
- While there may be thousands of sub-problems, JSR-331 Linear Solvers are able to quickly solve them
- Then OpenRules decision model analyzes all found solutions to come up with the optimal solution that satisfy a configurable combined objective - a maximal combination of Revenue, Margin, and Sell-Through
- Big advantage of this approach: it can be parallelized to solve even much larger problems!
- We applied a combination of Machine Learning, Business Rules, and Multi-Objective Optimization to solve a realworld operational problem - flash sale price optimization
- The pricing methodology and tools that support each of these 3 decision management techniques were readily available and quite powerful
- However, the production-level problems required a special ingenious approach to actually solve these problems

Questions?

Igor Elbert

