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INTRO 

I was happy to see a large number of submissions to the challenge.  Just to make things clear, I did 

not start the challenge and I did not pick the example, so don’t blame me if you did not like the case. 

But I am happy to give some feedback, as requested. Thanks for all the extra work, DMC! 

The comments are by no means an indication of the capabilities/weaknesses of specific tools or 

submitters. They are just a feedback to the courageous decision table modelers who tried to guess 

my preference and help to build support for good decision table and DMN practices. Many thanks to 

all of you. 

CRITERIA 

The example was a real one (some years ago). I sometimes used it in presentations, so I can imagine 

some of you have seen a decision table form of it earlier. But that should be no reason not to look 

for the best solution. 

Of course there is no best solution for all purposes. The holiday rules show how decision modeling 

involves:  

 modeling the set of decisions and rules 

 providing an overview for business purposes (easy to analyze) 

 looking for inconsistencies or omissions (easy to validate) 

 traceability to the knowledge authority 

 ease of maintenance 

 efficient implementation 
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 easy to build 

 flexible reasoning 

 etc. 

So it should be no surprise that many submissions have various advantages. 

There are also some specific considerations about this example: 

- Additional days (5, 3, 2) are only added once (that is an assumption indeed), but some of 

them can be combined. 

- The 2 extra days cannot be combined with the 5 extra days. 

- You can not have more years of service than your age – the legal minimum age (child labour 

is illegal). 

And there are some business questions that should be answered easily: 

- Decision making: John Doe is 50 and has 30 years of service, how much does he get (30 

days)? 

- Overview: Who finally gets the 2 extra days?  

- Maintenance: What if the combination policy for 2 and 5 bonus days changes? 

- Analysis: Are there some strange assignments in giving additional days? Yes, if you turn 18, 

e.g., you loose 5 bonus days. 

FIRST CONCLUSIONS 

One of the things worth mentioning is that there is a large variety of tools and formats. Now that 

DMN 1.1 offers a standard representation, it would be good for exchange and readability if the 

common notation is used: 

 [45..60) or [45..60[ are well-defined notations and much more compact than “(Age >= 45) 

and (Age < 60)” 

 Decision tables can return the outcome of one rule (the first, the only one, whatever) or the 

outcomes of all matching rules. It is not always clear from the submissions what is meant. 

That is exactly the purpose of the hit indicator: tell us how to read the table. If the hit 

indicator is not used, only the outcome(s) of one rule will be returned. 

 An irrelevant input entry is indicated with “-“, not ‘*’ or blank. 

AN OVERVIEW OF THE SUBMISSIONS 

Let us have a look at the solutions, one by one, in the order presented on the community site.  

OpenRules 1 – Unique-Hit Decision Table 

A typical nice straightforward table. It is complete and consistent. John Doe gets his 30 days and it is 

easy to see who gets 5 extra days, by leaving these numbers unadded in the outcome cells. Rows 5 

and 6 could be contracted.  

It is clear who gets 2 bonus days. But what was the original rule for getting 2 days? Is it lost in 

translation? 
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OpenRules 2 – Multiple-Hit Decision Table 

A lot of work has to go into this table. First the OR-ed rules are enumerated, where we have to make 

sure that the 5 and 3 days are only added once, and that the 2 extra days are never added on top of 

the 5 by carefully reformulating these rules. Because an OR in decision tables leads to multiple rules 

and in this case we want to make sure that the rules for 5 (or 2 or 3) do not overlap. Otherwise the 

same number of extra days would be given more than once. Tooling can overcome this difficulty, but 

is it really close to the problem formulation? What if the business decides that the 5 and 3 days can 

not be combined anymore. Who gets both anyway? Very error-prone indeed. 

OpenRules 3 – Distinct decision tables 

Similar to Gary’s solution, the global table nicely solves the combination problem (what can be 

combined?). The separate tables are close to the specification. But are these first-hit tables? I don’t 

see any indication of this hit policy. The last row is the default value. What if I would put the last row 

first? This is clearly a default row (called the ELSE-row). 

The tables are very traceable and maintainable. But how can I (poor human with a short memory) 

find John Doe in an instant? I would have to answer a question about his age in the 5-table, then 

again in the 3-table, etc. 

DMN – Distinct decision tables 

Modeling serves a purpose. Instead of imprecise natural language, a more formal specification of the 

problem statement takes away ambiguities and confusion. DMN allows to model  this decision and 

its constituting components and Gary shows us how to do this elegantly in DMN.   The bonus rules 

are listed in distinct tables, and the boxed expression for the top decision tells us how to combine 

the three bonuses. This is very flexible, traceable and maintainable. 

Have a look at some DMN conventions: 

- A boxed expression to set the base days. 

- The A (Any) hit-indicator to list rules connected by “or”, with the same outcome. This allows 

to stay close to he original text (and automatically avoids giving the 5 days more than once). 

- The underlined value false to state the default outcome. 

- The use of “,” in ‘<18, >=60’ to indicate ‘or’.  

- The expression to calculate the total days (it could also be a table, for people who do not 

understand ‘if then else’). 

The model is of course fully executable. 

John Doe gets his 30 days. It is only a little difficult to spot the difference between John with 29 and 

John with 30 years of experience.  How much can he gain by staying an extra year? 6 days. 

Corticon 1 – Multiple-hit table 

The original rules are recognizable in the table and in order to avoid double bonuses (5+5), the rules 

are adapted. The design process is well illustrated.  This is a very good analysis of how to move from 

the original rules to the clean multiple-hit table. And it was even noticed that some employees 
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receive no bonus and how to solve that. The result clearly distinguishes the various bonuses, but 

somehow it still hides how 2, 3 and 5 days can be combined, because it is implicit in the rules, not 

explicit. How do I know that the bonus days have to be added? 

Corticon 2 – Separating Eligibility and Exclusion 

This is a nice set of tables. The combination rules are now separated from the eligibility rules and can 

be managed separately. The tables are multiple-hit, every result has its own set of rules, and some 

results can be combined. 

Adding flexibility: This is now turning into a powerful and flexible mechanism. Overlap in eligibility 

can be shown, although a unique-hit table might have shown a stronger picture here. Sometime it is 

a little hard to figure out if one rule should be chosen, or all the rules that apply. 

Corticon 3 – Unique-hit table with business view 

The distinction between business and implementation view is nice. The major message here, 

however, is that now a unique, single-hit table is used. This indicates that something is still useful to 

add to the multiple-hit tables of the previous solutions: the overview. 

Trisotech 1 – Unique decision table 

Complete, consistent and easy to overview the result. Nice to refer to the original rules for 

traceability. Notice the world ‘rules’ here and in the solution, as opposed to rows, so a distinction is 

made, which is a plus. 

What if the original combination rules for 5, 3, 2 would change?  Then the table has to be rebuilt 

indeed, which is a little complex. 

Rewriting the original text is a plus, but I wouldn’t have used a ‘first rule that applies’ approach here. 

Trisotech 2 – First-hit table 

As you indicate, I do not like such a first-hit table. Who finally gets the 22+2 days? Everyone >=45 

with >=15 years of service? No, only if they did not receive more days in the previous rows. And who 

was that again? Humans can not perform such complex logical operations on a Friday evening. Hard 

to validate, although in this case maintenance is not such a problem, because the rows are ordered 

according to the original rules.  

Avola – Any-hit table 

The ‘Any’ table allows to stay rather close to the initial specification, keeping the “OR” in “at least 

age 60 or more than 30 years of service”. But the rules have to be reformulated anyway to avoid 2 

bonus days on top of 5. Why not go one step further and avoid the overlap in the last 2 rows? The 

last row, e.g. could show [18..60).  

I would also use DMN range and hit indicators. 
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Blueriq 1 – Unique-hit table 

Fine, although I would stick to the standard ‘-‘ for irrelevant and [18..45) or [18..45[ for the range of 

values. The ‘[]’ for otherwise can be useful, but not in this simple case. It might also be confused with 

an empty range. Better without the ‘[]’ indeed. The individual bonuses have disappeared by adding 

them. 

The version with “UNKNOWN”: Unknown values can be very important for correct and smart 

decision making. But is this not rather part of the execution environment? Is the decision logic really 

different if input values are unknown? 

Blueriq 2 – Unique-hit table for additional days only 

Taking out the base days can indeed be a nice way to deal with the default of 22. But adding the 

bonus days together is a little hard for traceability and maintenance. 

Blueriq 3 – Decision table with the most frequent outcome as default 

This table is compact, but has the same disadvantages as a table with an ELSE-column: hard to have 

a good overview and analyze the situation. 

Blueriq 4 – A table with complex conditions 

Nice if a tool can do this, but I gave up trying to figure out if the table is even correct. Difficult to 

understand, as you mention. 

Blueriq 5 – The smallest decision table 

Compactness is always an advantage if it doesn’t harm other criteria. But it does here. Difficult for 

business, as you mention. 

RapidGen 1 – First-hit table 

This is actually an “any”-hit table with an ELSE-column. The rules only overlap if they lead to the 

same outcome (“or”), e.g. rules 2 and 3. The initial action is a nice way to indicate the default. 

Hard to figure out if the table is complete. Of course it is complete by definition because of the ELSE-

column, but it is difficult to see that this only contains the case Age [18..45) and Service < 15. 

Splitting the input ranges into Limited-entry (Y, N) inputs saves space, but is always harder to 

understand. 

RapidGen 2 – Unique-hit table 

The rules do not overlap so this would be a unique-hit table without the ELSE-column. Actually, the 

ELSE-column does not cover any cases, so it can be omitted. Splitting the input ranges into Limited-

entry (Y, N) inputs is still harder to understand. 

Dealing with invalid input data and calculated years is a nice addition. I would keep it out of the 

decision table though. Nice implementation. 
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IBM ODM – Multiple-hit table 

Some assumptions have to be made indeed. The 5 days are only given once. Also the 2 days, but 

how could you know?  

The bonus is hardcoded, so that is a little difficult to maintain. 

The table has some nice properties in that all the rows (except the first one) are non-overlapping. At 

least if you read <45 as [18..45). But the order is a little strange and harder to validate manually. Is 

that the reason why I don’t find an outcome for Age [45..60) with Service < 15? Or do you assume 

that a 45 year old always has more than 15 years of service? That is a little too fast.  And what about 

Age [18..45) with Service < 15? 

Rule #2 of the text uses the words: “Employees with Service >= 30 and also Employees with Age >= 

60…”. Isn’t this a common ways to express “or” in daily language? So a 45 year old with 30 years of 

service should receive a bonus of 8. 

The first row always applies, therefore this is a multiple-hit table (although the + is missing). But the 

rest of the table is first-hit or even unique-hit. I would not mix both forms. 

FlexRule – Distinct decision tables 

Similar to Gary’s and Jacob’s solution with the combinations in the Total table (with similar 

advantages). But how do I read this total table? Can I stop after a hit? No, I have to continue, so it is 

multiple-hit (where outcomes have to be added). In the other tables, I have to stop after a hit, or 

everything turns false, so these are first-hit tables. Where do I see this? I would indicate the 

distinction between these types of tables and show the hit-indicator. 

 Finding John Doe is not an easy task. 

EVALUATION 

There are different types of solutions and they reflect where we put the focus in this decision 

challenge: 

 Building a model which clearly captures the original specification and can easily be traced 

back to it. This is flexible and easy to maintain. If the bonus rules or the combination rules 

change, the model easily follows.  For good examples, have a look at Gary’s DMN solution. 

OpenRules 3, Corticon 2 and FlexRule are similar. 

 Buiding a model which easily shows the overview, allowing to analyze and validate the 

business concerns. These models allow to compare the bonus days over age categories, spot 

strange outcomes and show the result in a blink of the eye.   For some good examples, see 

Trisotech 1, Corticon 3, Open Rules 1 and RapidGen1. 

 Building a model (and tables) that tries to combine both views: show the final outcomes 

and ensure traceability to some extent. That is often a compromise and challenging. See 

Avola, Blueriq, IBM ODM.  

Note that all this is possible in DMN, in a standardized way, and immediately executable from 

the model. 
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THE OVERVIEW 

 Traceable Maintainable Overview DMN conformant Score 

OpenRules 1: medium medium high high very good 

2: medium medium medium high good 

3: high high medium medium excellent 

DMN: high high medium high excellent 

Corticon 1: medium low medium medium good 

2: high high medium high excellent 

3: medium medium high high very good 

Trisotech 1: high medium high high excellent 

2: high medium medium high very good 

Avola: high medium medium medium good 

Blueriq 1: medium medium high medium good 

2: medium medium high medium good 

3: medium medium medium medium good 

4: medium low medium low low 

5: medium low low low low 

RapidGen 1: high medium medium medium good 

2: medium medium high medium very good 

IBM ODM: medium medium medium medium good 

FlexRule: high high medium low good 

 

Final note 1: With all these possibilities, it is important to understand and exchange each other’s 

models. So, follow the DMN conventions. 

Final note 2: Trying to satisfy all objectives in one model is not an easy task. Here is a challenge for 

the next generation of DMN tools: model transformation, in order to deal with multiple objectives. 

Jan 


